



# The Beauty of Geometrical Curves

Professor Sarah Hart Gresham Professor of Geometry





# The Cycloid





#### Area under cycloid arch?

Galileo  $\rightarrow$  Mersenne  $\rightarrow$  Gilles de Roberval



# The Helen of Geometry

- Descartes vs Fermat
- Roberval vs Torricelli

Pascal studying the cycloid, by Augustin Pajou

# 1656 – a breakthrough in clock design

mg

:0

- Huygens built first pendulum clock
- Force along circular arc:  $mg \sin \theta$
- This  $\approx mg\theta$  for small angles.

• Gives period = 
$$2\pi \sqrt{\frac{L}{g}}$$

Clocks now accurate to 15s/day



### The tautochrone problem

- Find a curve such that wherever a particle is released, it reaches the bottom in the same time.
- Required curve is a cycloid!



#### Involutes

- An involute is the path of the end of a straight line segment rolling along a curve.
- Equivalent to unwinding a taut thread from the curve.
- Find curve X such that involute is a cycloid.



### The involute of a cycloid is a cycloid!



# The Brachistochrone problem

- Posed by Johann Bernouilli, 1696
- Solved by Johann & Jacob Bernouilli, Gottfried Leibniz and...





# Area under a cycloid (Roberval's argument)



- Create "companion curve"
- Area A = Area S =  $\frac{1}{2}\pi r^2$ (Cavalieri's Principle)

• Area B = Area C =  $\frac{1}{2}$  rectangle =  $\pi r^{2}$ 

- Area ½ arch = A + B =  $\frac{3}{2}\pi r^2$
- Area under cycloid arch =  $3\pi r^2$



- Many others worked on cycloids. Eg:
- Wren proved cycloid arch length = 8r
- Cycloids mentioned in Moby Dick, Tristram Shandy, Gulliver's Travels

#### In 2023

- 300 years since Wren's death Gresham events
- "Once Upon a Prime" book on maths & literature



# Epicycloids and hypocycloids

Cardioid



gifs from Wikimedia commons – details in transcript



# Many varieties

- Cycloid
- Trochoids
- Epicycloids
- Epitrochoids
- Hypocycloids
- Hypotrochoids

# Length and Area of epicycloid arches



- Rolling circle radius r
- If fixed circle radius kr then k arches
- Cardioid length 16r, shaded area  $5\pi r^2$
- arch length  $8r\left(1+\frac{1}{k}\right)$
- area under arch  $\pi r^2 \left(3 + \frac{2}{k}\right)$
- Cycloid is limit as  $k \to \infty$
- Arch length 8r, area  $3\pi r^2$





# Cardioid-spotting

#### Is this caustic a cardioid?







### Where else to see cardioids

![](_page_20_Picture_1.jpeg)

![](_page_21_Picture_0.jpeg)

### Applications of Circle Involutes

![](_page_22_Picture_1.jpeg)

![](_page_22_Picture_2.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_23_Picture_1.jpeg)

- Line of force is tangent to both circles.
- If same diametral pitch (teeth per inch) can use identical teeth on any size gear

### Inside a Nuclear Reactor

 High Flux Isotope Reactor, Oak Ridge National Laboratory Tennessee, US

(stills from YouTube video – link in transcript)

![](_page_24_Picture_3.jpeg)

#### How to curve fuel strips in cylindrical reactor core so they are equally spaced?

![](_page_26_Picture_0.jpeg)

![](_page_27_Picture_0.jpeg)

#### Inside a Nuclear Reactor

![](_page_29_Picture_0.jpeg)

GRESHAM

The Surprising Uses of Conic Sections

April 25<sup>th</sup> 2022, 1pm

Gresham.ac.uk Sarah Hart

@greshamcollege @sarahlovesmaths

![](_page_29_Picture_6.jpeg)

![](_page_29_Picture_7.jpeg)

![](_page_29_Picture_8.jpeg)