GRESHAM
 COLLEGE

The Maths of Coins and Currencies

Professor Sarah Hart
Gresham Professor of Geometry

Hiero's Crown

Was Vitruvius wrong?

- density of gold: $19.32 \mathrm{~g} / \mathrm{cm}^{3}$; of silver: $10.49 \mathrm{~g} / \mathrm{cm}^{3}$
- density $=\frac{\text { mass }}{\text { volume }^{\prime}}$, so volume $=\frac{\text { mass }}{\text { density }}{ }^{\prime}$,
- 1 kg gold is $\frac{1000}{19.32}=51.76 \mathrm{~cm}^{3}$;
- 1 kg silver $=95.33 \mathrm{~cm}^{3}$
- if 1 kg crown actually 10% silver, then 900 g gold $\left(46.58 \mathrm{~cm}^{3}\right)+100 \mathrm{~g}$ silver $\left(9.53 \mathrm{~cm}^{3}\right)$
- total $56.12 \mathrm{~cm}^{3}$, a discrepancy of $4.36 \mathrm{~cm}^{3}$.

- diameter 20 cm , area $\approx 314 \mathrm{~cm}^{2}$
- volume difference $4.36 \mathrm{~cm}^{3}$
- difference in water level 0.14 mm .

- tube 1 cm wide
- height in tube is 4.36 cm .

Galileo's suggestion

- Use Archimedes' knowledge of buoyancy.
- Weigh equal amounts gold \& silver
- 1 kg gold $=51.76 \mathrm{~cm}^{3}$
- Apparent weight underwater 948.24 g
- 1 kg silver $=95.33 \mathrm{~cm}^{3}$
- Apparent weight underwater 904.67 g

Which weighs more a ton of bricks or a ton of feathers?

Catching counterfeits

- Weighing
- Measuring
- Assaying
- Milling etc

How to run a mint

- Suppose you have two kinds of silver bullion:
- Bad bullion: fineness 4 (ounces in a pound say)
- Good bullion: fineness 9
- Coins must have fineness 7. What do we do?

Fibonacci's alligation solution:

- Bad bullion is 3 parts worse than needed
- good bullion is 2 parts better.

- "Therefore" mix in ratio 2 bad: 3 good
- Can generalise. Many applications.

The puzzle of the birds

- 30 birds of 3 kinds bought for 30 pennies
- sparrow $=1 / 2 p$, pigeon $=2 p$, partridge $=3 p$
- desired "fineness" therefore 1 (penny/bird)
- sparrow : pigeon = $1: 1 / 2$ or $2: 1$ (total 3)
- sparrow : partridge $=2: 1 / 2$ or $4: 1$ (total 5)
- Any combination of these will give 1 p/bird
- Only one solution involves all three birds:
- 3 partridge 5 pigeon 22 sparrows
- Subject now known as linear programming

The shape of money

$$
D
$$

- Side length of triangle is s; each circle arc radius s
- Constant width s
- Works for any odd number of sides: Reuleaux polygons

Reuleaux coins

Other uses of Reuleaux triangles

Guitar pick/plectrum

- points for sharp, bright sound;
- curves for soft, warm sound

Drilling a square hole

- Harry Watts drill bit (1916)
- Image credit: Wikipedia

Area of shapes of constant width

- Barbier's theorem: every shape of constant width s has perimeter πs.
- Area Reuleaux Triangle width s
- $=3\left(\frac{1}{6}\right.$ circle $)-2($ triangle $)$
- $=\frac{1}{2}\left(\pi s^{2}\right)-2\left(\frac{1}{2} \cdot s \cdot \frac{\sqrt{3}}{2} s\right)$
$\cdot=\frac{1}{2} \pi s^{2}-\frac{\sqrt{3}}{2} s^{2}$
$\cdot=\frac{1}{2} s^{2}(\pi-\sqrt{3}) \approx 0.705 s^{2}$
- circle width s has area $\frac{1}{4} \pi s^{2} \approx 0.785 s^{2}$
- Reuleaux Triangle least possible

straight edges, min/max width difference too large

Curved edges, $\min /$ max width difference smaller

The denomination debate

- Want: easy to divide up into parts, and easy to calculate with.
- To make $1 / 2,1 / 3,1 / 4$, need units divisible into a multiple of 12 parts.
- 1 shilling = 12d

Why go decimal?

- Old $£ 1=20$ s = 240d.
- Cost of 40 items at 1s 7d each:
- $280 \mathrm{~d}=23 \mathrm{~s} 8 \mathrm{~d}=\mathrm{f1} 3 \mathrm{~s} 8 \mathrm{~d}$
- $40 \mathrm{~s}=£ 2$
- Total: $£ 3$ 3s 8d
- If $£ 1=100$ pennies then cost of 40 items 8p each is $£ 3.20$.

Worst currency ever?

- 1696: Christopher Wren proposed silver noble divided into 10 primes, 100 seconds "which Tentessimaf division wifl be very proper for ötccounts"
- 1704: Russian rouble = 100 kopeks
- 1792: US dollar = 100 cents
- UK finally went decimal 15 Feb 1971

What (decimal) denominations are best?

Dr Adam Townsend (University of Durham) suggested average number of coins in change as measure of efficiency.

- UK: 1p, 2p, 5p, 10p, 20p, 50p
- Up to 99p change:
- Mean 3.43 coins, median 3
- Swap 20p for "crown"?
- No effect
- US: 1ç, 5¢, 10¢, 25¢
- Up to 99¢ change:
- Mean 4.75, median 5
- Swap quarter for 20¢?
- Mean 5.05

Try it: my version of code, + links to Adam Townsend's articles, in transcript

- self-checkout machines usually give $1 p, 2 p, 5 p, 20 p, £ 1, £ 2$
- change up to 99p:
mean 4.75, median 5
- with 1 p, 2 p, 5 p, 20p, 50 p, $£ 2$
- change up to 99p:
mean 3.84, median 4

Has the 1p had its day?

- $1 / 2$ p coin "let not its existence be imperilled. It is indispensable for levelling off pendulum clocks" discontinued 1984.
- $£ 1$ in 1984 worth $£ 2.63$ today*
- $1 / 2 p \rightarrow 1.3 p$

- £1 in 1960 worth $£ 16.18$ today*
- 1 farthing \rightarrow 1.7p

GRESHAM

COLLEGE

The Mathematics of Game Theory

$22^{\text {nd }}$ November 2022, 1pm
@greshamcollege
@sarahlovesmaths

BRITISH SOCIETY

