The Invention of Mathematical Proof in the Renaissance

Richard Oosterhoff
University of Edinburgh

"The issue is not what made Greek mathematics valid. The question is what made it felt to be valid, for felt to be valid it certainly was. So logic collapses back into cognition, in a sense."

- Reviel Netz, The Shaping of Deduction (1999)

A reminder: medieval and renaissance starting points
"there are three elements in demonstration:
(1) what is proved, the conclusion-an attribute inhering
essentially in a genus;
(2) the axioms, i.e. axioms which are premisses of demonstration;
(3) the subject-genus whose attributes, i.e. essential properties, are revealed by the demonstration."
'The concentration on the model of demonstration in the Organon and in Euclid, the one that proceeds via valid deductive argument from premises that are themselves indemonstrable but necessary and self-evident, that concentration is liable to distort the Greek materials already-let alone the interpretation of Chinese texts.'

- GER Lloyd, 'The Agora perspective' (1992), cit. Chemla 2012, 2-3n.
"In geometry everyone has been taught to accept that as a rule nothing is written without there being a conclusive demonstration available; so that inexperienced students make the mistake of accepting what is false, in their desire to appear to understand it, more often than they make the mistake of rejecting what is true."
—Descartes, dedication to the Meditations, AT 7.5 (trans. Cottingham)

Descartes saw his own "geometrical" argument as involving six or seven parts: Definitions, postulates, axioms or common notions, problems, theorems, demonstrations, and corollaries.

The long view:
 Proof as Invention:
 Inventing Proof:
 Copia
 Acutezza

Mise-en-page and Authorship

Conclusion

Oxford Bod. MS D'Orville 301. Copied by Stephen the Clerk for Arethas of Patras, Constantinople, 888 AD

MS Vat. gr. 190 cerre dimifio. Linqdiuerfaf formaf ipfiuf difipline pon
 undazionif tëpore infundebac: (unuf difupline masiftrintoref a Sed uarro pratfimuf hannorú bunt nominif caufam fic erenalf rat dicenf. Prufquide dimifiomif terrarizèmimif pofiaf uasanabi danabur poput pacif uerlia pfaraffe. Demde coonufanmarculi
 Tunc edemifioné orbrfürae plabily refero ratione correcas. Idec eft uedifaplina ipfa zeumeane nomen acaper. qat pfeta lonza

Circulam conangere dictar व̆cum carculum ranjar \&imucraque eeera paree confecat circulum

Circuli fe fe mutcem conangere dr̃r-quizangentef fe fe muice fecañ.

R ecoel lineae increculo aequaliè cencoo diffare dĩ̀ acemero mupfaf ducrep ppendiculares

P Lafuerodarculo diftare dř rnquam ppendicularif longior cadir.

Columbia NY, Plimpton MS 165

(c. 1294)

Enunciations by Euclid

Proofs by Campanus of Novara ($13^{\text {th }}$ c)

The long view: Proof as Invention: Inventing Proof: Mise-en-page and Authorship Copia Acutezza

Conclusion

Euclid in Renaissance print

$1482\left(=13^{\text {th }} \mathrm{c}\right.$
n.b. Platonist Euclid of Megara then Camnanus) believed to be Euclid of the Elements

Quecüqigiturde lineis alternefeferefpicientibus dieta funt:paria in totum et nüc quidem de fuperficiebus alternatim fumptisalternag ratione adin= uicem olilatis:intelligantur effe dicta. V trorüqsenim par eff determinatio. Que aute linearummetfuperficierūmutuap pruportion puifue fingulorum ad Qugula refponfus:equequens formula declarat.

e.g. Lefèvre d'Étaples, Clichtove, and Bovelles, Epitome compendiosaque introductio ... Introductio in geometriam Caroli Bovilli (Paris: Wolfgang Hopyl and Henri Étienne, 1503).
V.

Fo.lxviij.

CaroliBouilli Samarobrini, Introductio infcientiam Perfpectiuam.
 Videndimedium Vifibilis fpecies
Vifualis radius
Speculum
Vifus Simplex Compofitus Rectus
Obliquus
Integer
Fractus
Vifibile
Lux
Vmbra
Color
Magnitudo
Color

Extremus
Medius
Extremus
Albedo
Nigredo Medius
Puniceus
Flauus
Viridis
Purpureus Magnitudo
Punctus
Linea
Superficies
Corpus Speculum
Concaum
Conuexum
Planum
Diffinitiones

Ifus eft perfpectiua poteftas, uifibilia obiecta depre, hendens: Ecnonnunquam uidendiuirtus,nonnun quam uero uiffo, aut uifibilis obiectiad uifum diffu fio, fecies ${ }^{\text {q̧d dicitur. }}$

Interpretatio.
Vifibile eft uifus obiectum quomodocūó per feà uifu de, prehenditurl. Qure enim peraccidens, ut alterius fimilitudinem, aut priuatione uidentur, prafenti propofito minus congruunt. Corporez ením fubftantix, fuorum colorum, autma gnitudinum fpecies uifibiles fiüt: tenebı ε g uero lucis defectu.

Videndi medium, eft diuifibile fpatium, per quod uifibilis obiecti fpecies, ab eo ad uifum defertَ. Vifibilis uero ppecies, efteius quod uidetur fimilitudo, idipfum uifui reprefentans. Vifualis radius, eft linearecta, qux à centro uifus digrediens, ad uifibilis reicentrum terminatur. Ethic radius primus, č, teri infiniti funt.

Speculum eft corpus, quod reflexam uifibilis reifpeciem palam ipfi uifui refert,

Vifaum.
Vifus fimplex, eft reifimplicicius fimilitudine intuitio.
Vifus uero compofitus, quiduplici reflexá̆́ fpecie, rem uif̂ bilem deprehendit.
Vifus recto, eft cuius uifius radius, uifibilireieftppẽdicularís Obliquus uero uifus, eft cuius radius uifibilireinon perpen diculariterincidit.

Implication \#1 of proof as gloss

Proof interchangeable with practice

Oronce Fine,
Protomathesis
(Paris: G. Morhii, 1532).
 titudinem. V t in affumpro nuper exemplo, due 20 in 6 , confurgêt 120 : qux diuide per 12, Q prouenient 10, tor igitur palfum pronunciabis aletudinem F . termediumitunc omnis umbra proprio aquatur umbrofo, metienda itag folum dion zunber eft umbra, 8 ' propofita colligetur altitudo.Id autem fic, quotics altitudo Solis of pracife 45 graduum. Ex emplum habes de eadem altitudine $G \mathrm{~F}$, Sole in K exiften reccuius radius K L, umbram $\mathrm{G} L$ cidem umbrofo G F, aqquale finire uidetur, Quod
 fum xquiangula.angulus eñ C A D intrinfeco \& oppofito $G \mathrm{~F} L$ eft xqualis, per fu
perius allcoraram 20 primiclemetorumEuclidis, item angulus $A D C$ angulo $F G L$
 liseft,per eandem 32 primi.Ergo ficut A D ad D C, ita F G ad G L, pcr 4 fexticarun dem elementorum, Atquil latus A D lateriD © eft aquale:\& G F Figirur altitudosipfi umbra $G L$ refpondenter aquatur,
 maior fuerit 45 gradibus)nüc umbra erit umbrofo, fine rei altitudine minor:in ea deandime oul quippe ratione, quam habent partes filo interceptre ad 12. Sit rurfum in excmplum nera
cafus fill in pütum E, \& iplaD E partium 6 ,qualium C D latus eft 12 , fitos umbra Cafus fill in püctum E, 8 ip 1 D E partium 6 , qualium CD Datus eft 12 , fittopumbra G N,radio folari M N terminata, ea autẽ exiftat 5 palfuum : quoniam igitut 6 ad 12
fubduplarn uidentur habere rationem, codem modo umbra C dimidfium erit alo titudinis G F. Hoc autem in hunc modï demonftratur. Duo nanq̧ triangula A DE Pretaio ga\& F G N fünt inuicē xquiangula,quemadmodü percitatas $29,8<32$ primi elemês meriia torum Euclidis propofiriones, deduccre haud difficilk eft: \&K angulus A D E angu* Io F G N per quartum poftularum aqualis. Igitur per 4 fexticiuldem Euclidis, fie cur ED Dad D A, ita $N G$ ad G F. Duc itact per regulam 4 proportionalium,numerū paffuum ipfius umbre, utpote 5 , in $12,8 \subset$ confurgentem numerum, qui crit 60 , par tire per interceptas partes lateris CD, hoc eit D Enam quotices ex diwione numen
rus, oblatam indicahit altifudinem © E, rus,oblatam indicabit altitudinem GF,quam experieris effe 10 paffuum, quantam
per umbram eadem altitudine maiorem offendimus, Nec diflimiliter operabee

$$
\begin{array}{r}
\text { ris gitacunç acciderit umbra,quotquórue partes alterutrius lateris i C Caut } \mathrm{C} \text { D fue* } \\
\text { rint ab ipfo }
\end{array}
$$

Implication \#2 of proof as gloss

Proof as humanist invention

 (i.e. takes on characteristics of literary invention:copia > abundance)

Lefèvre d'Étaples, Elementa musicalia (1st 1496, here 1551)
num c b proportio. Ef itaque tonus in chorda a b, quil in epogdods $\sqrt{\delta q u i o c t a t u d i q u e ~}$ ratione confiflit:collocatus.
CTonum tono, \& quotquot libuerittin data chorda fubiungere.

$A \quad c\|c\|$	$\mathrm{d}\|\mathrm{c}\|$	\mid

C sit data clorda a b: in qua propo ifum fit tres confoquentes tonos fubiungere. partior per tertiom petitionom(ut in pracedenti faClum oft) /pacium totius chor, de a b in nonem equas portiones. © in nota offance portionis pono c : ita ut $b c$, ottauas illarum noucm partium teneat. maniffflum of per pracedentem: a b er $c b$ effe tonum. © per candem petitionem : partior \int pacium $c b$ in nouem aquas portiones. © in termino oftatuce particule pono d:ita ut $\mathrm{d} b$ contineat octo carvms partium quarum $c b$ nowem continct.per precedentem $c b a d d b$ onat tonum, $f f$ que iam uni tono, tonus unus fubiunttus. Rurfom fpacium d b conjimili modo in nouem aquas portiones diduco, er notam octauce fectionis littera e defigno: ita ut e botto carum partium contineat, quarum $d b$ continet nouem. per precedentem, $\mathrm{d} b$ ad e brefonat tonum. Junt igitur in data chorda a b tres continue fubinncti tos ni:-cilicet $a b c b, c b d b, d b$ e b.quod erat propo itum. er boc pacto quotquot lubet fubiungere: quàm facillimum eft. Et fi id fen we experiri, deprehenderéque cupias, poft pulfum totius chorde a b Juppone bemipherium chorde a b in figno c, ita ut fos la perftrepat refonétque particula c $b: \circlearrowright$ ênfus iudicio deprebendes foni totius a b ad onumi c b effe toni interuallum.quod fi hemifpherium transfers ad notam d: ex pulfu c b er db iterum tonum deprehendas.fed ex totius a b fono ad fonum particuled b duos tonos, duonímque toworum interuallum perpendet auditus. © boc palto fenfium iudiciis quotquot woles tonos deprehendendos committeres: er corum mixturas tum fuanes, tum inconcinnas(quas auditus tanquam offenfus borret refugítque)decemendas.
CTonorum continuatorum:minimos numeros afsignare.

The long view:
 Proof as Invention:
 Inventing Proof:
 Mise-en-page and Authorship
 Copia
 Acutezza

Conclusion

Proclus, Commentary on the First Book of the Elements

Prolegomenon, in:

Federico Commandino,

 Euclidis Elementorum libri XV. Unà cum scholits antiquis (Pisa, 1572).Proclus) Geometriam, quemadmoduon, ©o alias fcientias crrta quedam, iv defixita princtipia her. bere, ex quibus ea, que fequantur, demonftrat. quare seceffe eff feorfion quidem de principuis,feov fum vero de iss, que d principijs fluuut pertrallare. © principiorion nullam reddere rationem, qme autem principia confequantur, rationibus confirmare.nulla enim fcientia fua. den:onftrat pria cipia,verıon circa ea per fefef fibi fidem facit,cum magis exidentia fint, quàm qiar ex ipfis dermuit:
 determinato principio rationes producit, motion effe ponens;ita \&o medicus, i' aliarıon fcientia-
 fceat, is totam perturbat cognitionem!eaq, conglutinat, que wullo pacto inter fe connceniunt. Pri mum igitur principia, deinde ea, que confequantur, funt diffinguenda.quod fane Euclides in vnoquoque fivoram librorvas obfernanit; quippe qui ante omnem traftationem communia huius fcientiẹ pricipia exponit:et ipfa in fuppofitiones, /endiffinitiones, poftolatata, et axiomata diuidit.differruts näque has omnia inter fe,nec idem eft axioma, ©-pofiwlatiom, \& fruppofitio, vt Arifoteles afAxiom a. - ferit.Cuon enim is,qui andit propofitionem aliquam, fatim fine dotiore vt veram admittit, eíwe certeffimam fidem adhibet,boc exxioma appellatur, vt que eidem aqualia, ©o inter fe aqualia Supporitto - - fint.Csan vero audions dicente aliquo, eins,quod dicitur, notionem non babuerit, que per fe fe fiden faciat; verum tamen fupponic, ©' eo vtenti a/fentitur, ea fuppofitio eff,verti gratia, circwImme ciufmodi effe figuarm, commuri quadam notione non percepimus, fed audientes abfque vl-

Ia demonfiratione approbamus. Cum antem rurfus σ ignotum fit addijcenti, quod dicitur, wo tamen eo aflentiente aflumatur, tuan id poftulatum appellamus, $v t$ omnes reitios angulos aquales ef fe. Que autĕ à principìis enafcütur, ea font vel Problemata, vel Theoremata. Problema illud cft, in quo quippiam, cum primuon non fit proponitur inueniendum, ac conffruendum.Theorema autë in quo quippiam in conflituta iam figura ita effe nel non effe demonfratur. In bat igitur elenenta ri inflitutioue Euclidem quis non fiommopere admiretur propter ordinem, \& eleliionen eorum, que per elementa diffribuit, theoremath, atque problematü's non enim oỉa a/fimpfit, qua poterat dicere,sed ea dxomtaxat,qux elementari tradere potuit ordine.adbwc autem parios fyllogijmorú modos x firpasit, alios quidem ì caufis fidem accipientes, alios verod fignis profecitas, ownes neceffarios ef certos,atque ad fcientiam accómodatos.onnes praterea dialecticas vias, ac ratio nes; dividentem in formarwon inuentionibus; diffinienterns in efentialibus rationibus ; demonfiră tem vero in progrefsibus, qui ì principipis ad quefita funt. denique refoluentem in ìs, qui à qua
fatis ad principia fuant regrefibus. Quin etiam varias conuerfiowian fpecies tuon fimplicium, twm compofitarum in hac trailatione intueri licet. © ' queg tota totis comuertipoffint, qué ve wota partibus, ${ }^{\prime}$ contra, \mathcal{O} que vt partes partibus. Poffremo admir abilem omnium difpofitionem, antece dentiuń, \&' confequentiŭ ordinĕ, ac cobarentiư, vt nibil prorfiss addi, aut detrabi poffe videatur.
In primo igitior libro traltat de relthineis figuris, viddicet de triangulis, ac parallelogrammis.Et primeon triangulorum ortus, proprietatefy̆, tradit, tum iuxta angulos, tum iuxta latera; itfa inter fe fe comparans. Deinde parallelaruon proprietates interyiciens ad parallelogramma tranfit, eorumá, ortuon declarat, \& fymbtomate, que in ip is furt, denonfrat,.poftea trianrulo-

Commandino uses Proclus to clear up Euclid's authorship too:

* Euclid of Megara NOT the author of the Elements (because too early)
* The proofs belong to Euclid, but as edited by Theon of Alexandria (4th century):
"sunt igitur illae quidem demonstrationes Euclidis, sed eo modo conscriptae, quo olim Theon Euclidem secutus suis discipulis explicavit"
—Commandino, Prolegomenon to Euclidis elementa, sig. *5v

Enunciation classed as Problema, theorem, corollary... etc.

EVCLID. ELEMENT.

 lincion angulion lif ariam fecare, Com vero diciomus, Datis dusbus reflis lusais inequalibus a ma.

 sos etiam, es res modos complectisia . demenfratio vero interdion quidem ques denorffra-

\qquad monf frations perfectio eff viner dian ucro ex certis notis arguens;quod diligutrer attendere opor

 us autem diff rentes confrructionis nodos, © pofionis matationcmindicat, niminimn triuppoitis ploctis, uel lineis, uelplanis, ued louidis, vo omnimo ip fias narietas circa defcriptionen

 ael demonfrationi ccosrens, quam tamen non oportet it neram admittere, fol remozere,

 portionales imenim

PROBLEMA I. PROPOSITIOI. In data recta linea terminata, triangulü xquilaterü conftituere. Sit data recta linea terminata A B. oportet in ipla A B triangulam rquiarerum conftituere . centro quidem A interuallo autem $A B$ circulus deCribatur BCD. \& rurfus centro 3 , in crualloq́; BA defcribatur circulus A E, \&a puncto C, in quo circuli fe inex CA CB Ornim igitry A cen trumeft circuli CBD, erit AC ipfí $A B$ qqualis. rurfus quonia B circulí A E eft centrum, erit B C xqualis B A. oftenfa eft autem et C A aqualis A B. vtrique igitur ip parum C A C BipfiA B ett xqualis.que autem eice funt x quaiia, er inter fe aqualia funt. ergo $C A$ ipfi $C B$ eft squalis, tres igitur $C A A B B C$ in-

"Authoritative"

 proofter fe fint aquales; ac propterea rriangulam aquilaterum ef $A B C, R$ confititum eft in data regta linez terninata A, B, qued ficife oportcbat. Es omina, qase ante dict fint, is boc prieno problemate contcripl lai Licet. nan problems commentary

 Ctalinea terminata A B] © wido expofitioncou dation folun cepticare, zon etion quefinon adiungere, pof quan deternintio Loportet ind data reda linea triangulum aquilateri Deuminaconffituere $)$ dectrminatio aititen quodd dmmmodo a strentionin of cail a, attentiores cinin ad de-
 tign ante oculos ponendo. pof quidem reliquo, interuallo autem eo, quod prius centrum erat, defcribatur circulus, et ì communi fectionis circulorum puncoozad linez terminos reetax linee ducantur] © vides nic ad confrultiontom vip pofflatis , videlices à quomis pmito ad quodiis
 emin poffulata conftruffionibus, axionata vero demopyfrationibus vilitatem aff crovt. demse fo

 congruent his appofuit particalon [quod fecific oportebar] offnidans concly fionen proble Qud faci

 problemate ommia examinare volumus, ac perfichaf facere . oportet airem illos, qui bec legent,

 bamara circull, vt in aequilatero, producatur ABex vtraqueparte ad CD punfla. aequalis ginur ef $C B$ iof is D-quare centro quiden B, intrruallo antem CB circilks CE defribather © riafus centro \mathcal{A}, ơ interruillo $D A$ defcriba
 cuil fecant ad $A B$ panda ducantar $E A, E B$,

 quod fecifc oportebat. At propofition fit fations

(not proof)

Implication \#1 of Commandino's "Euclid"

Euclid's proofs become canonical ...

> with an authoritative vocabulary of proof

Proclus) Geometriam, quemadmoduon, or alias fcientias creta quedam, io definita printipia her. bere, ex quibus ea, que fequantur, demonftrat. quare seceffe eff feorfion quidem de principuis, feow fum vero de ìs, que d principits flunut pertrallare. © principiornom nullam reddere rationem, que autem primcipia confequostır, rationibus conformare nulla enim fcientia fuad den:onfrat prox cipia,verıon circa ea per fefef fibi fidem facit,cum magis exidentia fint, quàm qiare ex ipfis dermaittur: ©'oilla quidem per fefe, hac vero deinceps per illa cognofcit. Ita ev naturalis philofophus a determinato principio rationes producit, motion effe ponens;ita \&o medicus, i' aliarıon fcientiarum,atq; artium peritus. Quò dfi quis principia ccem üs, que d principüs flunotr, in idem comomifceat, is totam perturbat cognitionem! eag, conglutinat, que wullo pallo inter fe conucniumt. Pri mam igitur principia, deinde ea, que confequontur, funt diffinguendz.quod fane Euclides in vnoquoque fworion librorins obfernaxit; quippe qui ante omnem traftationem commamia huius fcientieg pricipia exponit:et ipfa in f uppoffitiones, feudiffrimitiones, poofthlata, et axiomata diuidit. differüt näque has omnia inter fe, nec idem eft axioma, ©-pofiulatiom, \& fuppofitio, vt Arifoteles af-

Axiom a - - ferit.Cuon enim is, qui andit propofitionem aliquam, fation fine doctore vt veram admittit, eíne certeffimam fidem adhibet,boc exxioma appellatur, vt que eidem aqualia, ©o inter fe aqualia Supporitio - - fint.Csan vero audions dicente aliquo, eins,quod dicitur, notionem non babuerit, que per fe fe fidem faciat; verum tamen fupponic, © eo vteuti affentitur, ea fuppoffitio eff, verki gratia, circuImme ciufmodi effe figuarm, commuri quadam notione non percepimus, fed audientes abfque vl-
 men eo affentiente aflumatur, tuncic id pofinlatum appellamus, vt omnes relios angulos aquales ef fe. Que autĕ à principìis enafcütur, ea fient vel Problemata, vel Theoremata. Troblema illud eft, in quo quippiam, cum primuon non fit proponitur inueniendum, ac conffruendum.Theorema autĕ
in quo quippiam in conffituta iam figura ita effe nel non effe demonftratur. In bac igitur elenenta ri inffitutione Euclidem quis non fiommopere admiretur propter ordinem, \& eleltionem eorum, que per elementa diffribuit, theoremath, atque problematuiks non enim oỉa affimpfit, qua poterat dicere,sed ea dxomtaxat,qux elementari tradere potuit ordine.adbwc autem parios fyllogijmorú modos xfirpauit, alios quidem ì caufis fidem accipientes, alios verod fignis profeitios, ownes neceffarios et certos,atque ad fcientiam accơmodatos.onnes praterea diale Clicas vias, ac ratia nes; dividentem in formarwon inuentionibus; diffinienterns in efentialibus rationibus ; demonfiră tem vero in progrefsibus, qui ì principipis ad quefita funt. denique refoluentem in ìs, qui à qua
fitis ad principia fuest regrefibus. Quin etiam varias conueffioniam /pecies tuon fimplicium, tum compofitarum in hac trailatione intueri liset. © queg tota totis converti pol int, qué ve sota partibus, 宁 contra, \mathcal{H} que vt partes partibus. Poffremo admir abilem omnium difpofitionem, antece dentiúń, et confequeatiŭu ordinë, ac cobarentiǔ,vt nibil prorfiss addi, aut detrabi poffe videatur.
In primo igitior libro traltat de relthineis figuris, viddicet de triangulis, ac parallelogrammis.Et primion triangulornm ortuss, proprietateffy, tradit, tum inxta angulos, tham iuxta latera; iffa inter fe fe comparans. Deinde parallelaruon proprietates interÿciens ad parallelogramma

A more focussed style of proof:
Spare, sharp, elegant
... Urbinate sprezzatura? (artful ease, lightness)
... or: acutezza (precision, labour).

A witty courtier of Urbino?

Baldi tells us that Commandino died from melancholy, due to overwork on mathematical problems.

Clavius (1574) theorises the Proclean division? (cf. Fine 1536, Peletier 1557)

QVID PROBLEMA, QYID THEORE

 ma, quid Propofitio, \& quid Lemma apud Mathematicos.DEMONSTRATIO omnis Mathematicorü̈ diuidi tur ab antiquis fcriptoribus in Problema, \& Theorema. Problema nocatns eam demonftrationem, que iubet, ac doces aliquid conftusuere. Vs fiquis conetur demonfirare, fupralineam reffam finitam poffe triangulum equilaterum confitui, appellabitur huinfcemodi demonftratio problema, quoniam docet, qua ratione triangulum aquilaterum conftitui debeat fupra rectam lineam finutam. Diffum eff autem hoc genus demonflrationnm Problema ad fimilitudinem prablematis Dialetfici. Sicut enim apud Dialetficos problema dicitur queStio illa, cuius utraque pars contradictionis (wt ipfi loquuntur.) eft probabilis , qualis heceff aueftio s An totsm diftin
libus, de maiore aqualem minorireatam lineam detrahere.
Sin T duar retarinequales A , minor, \& B C, maior
A oporteatq; ex maiore BC , detrahere hneá equalem minori A. Adalterutrum extremorür linex maioris B C, nempe ad punctư
2. primi.
3. per:

15: def.

Clavius (1574)

 distinguishes: - Theoremata /problemata- Euclid's proof
- His proofs
- scholia

batis B C, congraet baff E F, (ut mox demonftrabitur) ac propterea illa huic xqualis crit, cum ncutra alteram exproprerca tia nuic xqualus errit, cum ncucra alreram ex
cedat $\&$ trangulum A B C, triangulo D E F, \&c angufus $B_{\text {, a }}$ angulo E, \&e angulus C, angulo F, aqualis ob candem caufam cxiller.

Qvod autč bafis B C, cögruat baff EF, fi pun Cū B,punđto E, \&punctû C, pûcto $\mathrm{F}_{\text {, cōgruitjfacile demốf rabitur. } \mathrm{Si}}$ nó cögrucre dicat bafis B C, bafi EF, cadet uel fupra, ur efficiat rectam E G F, ucl infra, uc cóftituat ređẵ E H F. Vrrú uis horum concedatur, claudent dux linex recta E F, EGF, udE F, E H F, fuperficiem, (negarec nim nemo porent,tam E G F, quam E H F, rectam elle,cum utraque ponatur eademeffc, quax relta B C) Quodeftabfurdum. Duarenm recte fuperficié claudere non poffunt. Non eıgo bafis BC cadit fupra, uerintra baitm E F F, fed slicongruct Q uare
fainter fexequales funt, \&e.
gula duolatera duobus latenbus acqua-
lia habeant, esc. quod demon-
ftrandum crat.
8. pron.

ARIOS etiam pepe cafur effe in hec problematr, nemo gnoraf, cum duse linea ma qualer datie vel inter fe difien, ina extremü, vel fe watuo fecent; vel certe alseva diverá fub extre tmo tangat duntaxat, ©c, de qua relege Proclam hoc in locou THEOREMA I. PROPOS. 4.
SI duo triägula duo latera duobus late ribus æqualia habeảt, vtrűq; vtrị; ; habeãt
 rectis lineis cótentü: Et bafim bafi æqualé habebuts eritđ̧; triangulú triangulo æquale; ac reliqui anguli reliquis angulis æquales crunt, vterq; vtriq; fub quibus x qualia la tera fubtenduntur.

The long view: Proof as Invention: Inventing Proof: Mise-en-page and Authorship Copia Acutezza

Conclusion

Conclusion

> The very idea of proof: what is an axiomatic system or "doing geometry"?

Account of "Euclid"—and what counts as geometrical reasoningshifts in the sixteenth century. One implication: Descartes can take "geometrical method" to mean a way of organising a text, and that axiomatic reasoning becomes what it does for Spinoza, Newton, etc.

More interesting: the earlier lack of consensus on Euclid's authorship implies a wider view of geometry-a "copious" view (such that e.g. "doing geometry" could be chiefly about intuitingenunciations).

Prize Giving

Hosted by Professor Sarah Hart

How Mathematical Proofs are Like Recipes

Fenner Stanley Tanswell

GRES $\underset{\text { college }}{\text { SHAM }}$

Content

- Proofs as recipes
- The language of modern proofs
- Picture proofs
- Lessons for teaching

A proof is a deductive argument: a logically structured sequence of assertions, beginning from accepted premises or axioms, and proceeding by established inference rules to a conclusion, which is the theorem being proved.

1.Separate the eggs.
2. Beat the yolks with a rotary beater until they are thick and lemon-colored.
3. Beat the egg whites until they are foamy, add the cream of tartar, and continue beating until they are dry.
4.Fold the sugar into the egg whites and then fold the yolks into this mixture.
5.Sift the flour several times and add it.
6.Add the lemon juice and vanilla, pour into a sponge-cake pan, and bake.

Woman's Institute Library of Cookery, Vol. 4

Theorem 3.57 (Bolzano-Weierstrass). Every bounded sequence of real numbers has a convergent subsequence.

Proof. Suppose that $\left(x_{n}\right)$ is a bounded sequence of real numbers. Let

$$
M=\sup _{n \in \mathbb{N}} x_{n}, \quad m=\inf _{n \in \mathbb{N}} x_{n}
$$

and define the closed interval $I_{0}=[m, M]$.

Hunter, J. K. (2014) An Introduction to Real Analysis. UC Davis: California.

Divide $I_{0}=L_{0} \cup R_{0}$ in half into two closed intervals, where

$$
L_{0}=[m,(m+M) / 2], \quad R_{0}=[(m+M) / 2, M] .
$$

At least one of the intervals L_{0}, R_{0} contains infinitely many terms of the sequence, meaning that $x_{n} \in L_{0}$ or $x_{n} \in R_{0}$ for infinitely many $n \in \mathbb{N}$ (even if the terms themselves are repeated).

Choose I_{1} to be one of the intervals L_{0}, R_{0} that contains infinitely many terms and choose $n_{1} \in \mathbb{N}$ such that $x_{n_{1}} \in I_{1}$. Divide $I_{1}=L_{1} \cup R_{1}$ in half into two closed intervals. One or both of the intervals L_{1}, R_{1} contains infinitely many terms of the sempence Choose I_{0} to be one of these intervals and choose $n_{0}>n_{1}$ such

Theorem 3.57 (Bolzano-Weierstrass). Every bounded sequence of real numbers has a convergent subsequence.

Proof. Suppose that $\left(x_{n}\right)$ is a bounded sequence of real numbers. Let

$$
M=\sup _{n \in \mathbb{N}} x_{n}, \quad m=\inf _{n \in \mathbb{N}} x_{n}
$$

and define the closed interval $I_{0}=[m, M]$.

Hunter, J. K. (2014) An Introduction to Real Analysis. UC Davis: California.

Divide $I_{0}=L_{0} \cup R_{0}$ in half into two closed intervals, where

$$
L_{0}=[m,(m+M) / 2], \quad R_{0}=[(m+M) / 2, M] .
$$

At least one of the intervals L_{0}, R_{0} contains infinitely many terms of the sequence, meaning that $x_{n} \in L_{0}$ or $x_{n} \in R_{0}$ for infinitely many $n \in \mathbb{N}$ (even if the terms themselves are repeated).

Choose I_{1} to be one of the intervals L_{0}, R_{0} that contains infinitely many terms and choose $n_{1} \in \mathbb{N}$ such that $x_{n_{1}} \in I_{1}$. Divide $I_{1}=L_{1} \cup R_{1}$ in half into two closed intervals. One or both of the intervals L_{1}, R_{1} contains infinitely many terms of the semuence Choose t_{0} to be one of these intervals and choose $n_{0}>n_{\text {, such }}$

A corpus linguistics study with Matthew Inglis (Loughborough).

Corpus linguistics: use a large body of texts to study language usage patterns.

lathematics (since February 1992)

or a specific paper, enter the identifier into the top right search box.

- Browse:

ArXiv.org/archive/m

- new (most recent mailing, with abstracts)
- recent (last 5 mailings)
- current month's math listings
- specific year/month:

$$
2022 \text { v all months v Go }
$$

- Catch-up:

Changes since: 05 マ 01 (Jan) $~ 2022$, view results without \vee abstracts Go

- Search within the math archive
- Article statistics by year:

20222021202020192018201720162015201420132012201120102009200820072006200520042003200220012000199919981997199619951994195

ategories within Mathematics

- math.AG - Algebraic Geometry (new, recent, current month)

Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology

- math.AT - Algebraic Topology (new, recent, current month)

Homotopy theory, homological algebra, algebraic treatments of manifolds

- math.AP - Analysis of PDEs (new, recent, current month)

Existence and uniqueness, boundary conditions, linear and non-linear operators, stability, soliton theory, integrable PDE's, conservation laws, qualitative dynamics

- math.CT - Category Theory (new, recent, current month)

Enriched categories, topoi, abelian categories, monoidal categories, homological algebra

- math.CA - Classical Analysis and ODEs (new, recent, current month)

Special functions, orthogonal polynomials, harmonic analysis, ODE's, differential relations, calculus of variations, approximations, expansions, asymptotics

- math.CO - Combinatorics (new, recent, current month)

Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory

- math.AC - Commutative Algebra (new, recent, current month)

Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics

- math.CV - Complex Variables (new, recent, current month)

Verb	Proof-Only	Non-Proof
Let	4523	4035
Suppose	944	512
Note	929	681
Consider	570	314
Assume	556	339
Recall	304	265
Define	272	167
Fix	255	106
Denote	218	145
Observe	213	92
Choose	199	45
Take	178	49

Write	117	39
Apply	53	6
Use	28	9
Call	14	11
Introduce	11	9
Construct	8	4
Say	7	7
Show	3	10
Check	2	2
Prove	1	4
Obtain	1	0
Conclude	0	0
TOTAL	9406	6854

FREQUENCY (per million

 words)Number of and percentage of files in the Proof-Only corpus containing the capitalised verb, alongside other keywords appearing at a roughly similar frequency for reference.

Verb	Number of files	\% of files	Nearby word	Number of files	\% of files
Let	2692	82.4%	then	2706	82.8%
Note	1486	45.5%	function	1477	45.2%
Suppose	1250	38.3%	thus	1274	39.0%
Consider	1186	36.3%	So	1186	36.3%
Assume	1085	33.2%	bounded	1053	32.2%
Recall	844	25.8%	know	843	25.8%
Define	712	21.8%	simple	722	22.1%
Fix	606	18.5%	action	598	18.3%
Choose	541	16.6%	length	553	16.9%
Denote	538	16.5%	precisely	544	16.7%
Take	459	14.1%	always	465	14.2%
Observe	447	13.7%	less	455	13.9%

evaluate integrate
subtract
number

Set the total degree equal to the sum of the bi-degrees.
Form the commutative cube in which the front and back faces are pullbacks, so that [...]

Sum the estimates in the previous corollary.
Estimate the difference on the right-hand side of [...] by the triangle inequality to find [...]

1) Some instructions are used frequently in proofs.
2) Instructions appear broadly in proofs in maths papers.
3) Many different instructions are used in proofs.

Theorem 1 The sum of the first n odd integers, starting from one, is n^{2}.

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

The original "proof by picture" is attributed to Nicomachus of Gerasa, circa 100CE, which is included as (Nelson, 1993, pg. 71).

Two problems with picture proofs:

1) Pictures aren't sequences of assertions, so are not proofs. If we try to extract assertions from the picture, it is underdetermined what they should be and what their logical sequence is.
2) A picture can only show a single case, rather than proving a general theorem.

© Inter IKEA Systems B.V. IKEA Svärta loft bed

Theorem 1 The sum of the first n odd integers, starting from one, is n^{2}.

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

The original "proof by picture" is attributed to Nicomachus of Gerasa, circa 100CE, which is included as (Nelson, 1993, pg. 71).

Implications for mathematics education with Keith Weber of Rutgers University.

Image by Hannes Edinger from Pixabay

2

R-

Assertions: Is this true? Does each step follow from the previous ones?

Recipes: What action am I being asked to carry out? Can I carry out this step? Do I know how? Does it produce the right outcome? Does it guarantee the right properties?

If you want students to learn how proofs work, maybe you should teach them how proofs work.

- Tanswell, F. (forthcoming) "Go Forth and Multiply: On Actions, Instructions and Imperatives in Mathematical Proofs"
- Tanswell, F., \& Inglis, M. (forthcoming) "The Language of Proofs: A Philosophical Corpus Linguistics Study of Instructions and Imperatives in Mathematical Texts"
- Sangwin, C., \& Tanswell, F. (forthcoming) "Developing new picture proofs that the sums of the first odd integers are squares", Mathematical Gazette.
- Weber, K., \& Tanswell, F. (2022) "Instructions and recipes in mathematical proofs". Educational Studies in Mathematics 111, pp. 73-87.
- Tanswell, F. S. (2017) "Playing with LEGO and Proving Theorems", in Cook, R. T. \& Bacharach, S. (eds.) LEGO and Philosophy: Constructing Reality Brick by Brick, Oxford: Wiley Blackwell, pp. 217-226.

www.FennerTanswell.com

@FennerTanswell

Fenner.Tanswell@gmail.com

FWO project: The Epistemology of Data Science: Mathematics and the Critical Research Agenda on Data Practices.

VRIJE
UNIVERSITEIT BRUSSEL

BREAK

Next Lecture:

Let's Decolonise the History of Mathematical Proofs!

Professor Agathe Keller

Let's decolonize the history of mathematical proofs!

Agathe Keller (Sphere, CNRS-Université Paris Cité)
$\overline{\mathrm{G}}$

Perhaps most interesting is the Hindus' and Arabs' self-contradictory concept of mathematics. Both worked freely in arithmetic and algebra and yet did not concern themselves at all with the notion of proof. (...) Both civilizations were on the whole uncritical, despite the Arabic commentaries on Euclid. Hence they may have been content to take mathematics as they found it ...

Mathematical Thought from Ancient to Modern Times. New York: Oxford University Press, 1972: 198.

Morris Kline (1908-1992)
votume

From the end of the 19th standard history of mathematical proofs was adopted.

It contained the definition of what made a true mathematical proof.

The standard model of proof has been used for all sorts of things that have nothing to do with mathematics;

It helped in creating a corpus of sources in which certain texts were accepted as containing proofs and others not.

The History of Mathematical Proof in Ancient Traditions

Edited by
KARINE CHEMLA

On y trouve une nouvelle preuve de cette singulière habitude de l'esprit, en vertu de laquelle les Arabes, comme les Chinois et les Hindous, bornaient leurs compositions scientifiques à l'exposition d'une suite de règles, qui, une fois posées, devaient se vérifier par leur applications mêmes, sans besoin de démonstration logique, ni de connexion entre elles: ce qui donne a ces nations orientales un caractère remarquable de dissemblance, et j'ajouterai d'infériorité intellectuelle, comparativement aux Grecs, chez lesquels toute proposition s'établit par raisonnement, et engendre des conséquences logiquement déduites.'
> this peculiar habit of mind, following which the Arabs, as the Chinese and Hindus, limited their scientific writings to the statement of a series of rules, which, once given, ought only to be verified by their applications, without requiring any logical demonstration or connections between them: this gives those Oriental nations a remarkable character of dissimilarity, I would even add of intellectual inferiority, comparatively to the Greeks, whith whom any proposition is established by reasoning and generaltes logically deduced consequences.

Biot, Jean-Baptiste. « Compte-rendu de: Traité des instruments astronomiques des Arabes, traduit par JJ Sédillot ». Journal des savants, 1841, 513-20; 602-10; 659-79.

QUESTIONSANDREMARKS

ASTRONOMY or the HINDUS.

Br John playpalr, a. M
PROFESSOR OF MATHEMATICS, AT EDINBURGH;
WRITTEN roch of OCTOBER, 2792.

PRESUMING on the invitation given, with so much liberality, in the Advertisement prefixed to the second volume of the Asiatic Researches, I have ventured to submit the following queries and observations to the President and other Members of the learned Society of Bengal,
1.

Are any Books to be found among the Hindus, which treat professedly of Geometry?
I am led to propose this question by having observed, not only that the whole of the Indian Astronomy is a system constructed with great geometrical skill, but that the trigonometrical rules, given in the translation from the Súrya Siddhánta, with which Mr. Davis

Are any books of Hindu Arithinetic to be procured?.

IT should seem, that, if such books exist, they must contain mach curious information, with many abridgements in the labour of calculating, and the like, all which may be reasonably expected from them, since an arithmetical notation, so perfect as that of India, has existed in that country much longer than in any other; but that, which most of all seems to deserve the attention of the learned, is the discovery said to be made of something like Algebra among the Hindus, such as the expreasion of number in general by certain symbols and the idea of negative quantities: These certainly cannot be too carefully in-

IV.

Would not a Catalogue Raisonne, containing an enumeration and a short account of the Sanscrit books on Indian Astronomy, be a work highly interesting and zuseful?

ALGEBRA,
with
ARITHMETIC AND MENSURATION,
from the
SANSCRİT
or
BRAHMEGUPTA AND BHÁSCARA.
translated by
HENRY THOMAS COLEBROOKE, Esq.
F. R. S.; M. LINN. AND GEOL. SOC. AND R. INST. LONDON; AS. SOC. BENGAL Ac. sc. munich.

LONDON:

Bhāskara II (b. 1114, sometimes called Bhāskarācarya) Līāvatī (on arithmetic) and Algebra (bijagaṇita)

Dissertation p. xvif:

On the subject of demonstrations, it is to be remarked that the Hindu mathematicians proved propositions both algebraically and geometrically: as is particularly noticed by BHÁSCARA himself, towards the close of his Algebra, where he gives both modes of proof of a remarkable method for the solution of indeterminate problems, which involve a factum of two unknown quantities.
p. 271 Colebrooke 1817 Algebra:

The demonstration follows. It is twofold in every case: one geometrical and the other algebraic.
asyopapatih| sā ca dvidhā sarvatra syāt| ekā kṣetragatānyā räśigatetiti|
p. 272 Colebrooke 1817 Algebra:

The algebraic demonstration must be exhibited to those who do not comprehend the geometric one.
ye kșetra-gatām upapattiṃ na buddhyanti teșām iyam
rāśigata darśanīyā

Dissertation p. xvif:

On the subject of demonstrations, it is to be remarked that the Hindu mathematicians proved propositions both algebraically and geometrically: as is particularly noticed by BHÁSCARA himself, towards the close of his Algebra, where he gives both modes of proof of a remarkable method for the solution of indeterminate problems, which involve a factum of two unknown quantities. exterior circle. ${ }^{1}$
28. ${ }^{2}$ The sums of the products of the sides about both the diagonals being divided by each other, multiply the quotients by the sum of the products of opposite sides; the square-roots of the results are the diagonals in a trapezium. ${ }^{3}$
${ }^{\prime}$ ' Example: An isosceles triangle, the sides of which are thirteen, the base ten, and the perpendicular twelve.
Statement: $13<13 \begin{gathered}\text { Product of the sides } \\ \text { the central line } 7 \frac{1}{24} .^{*}\end{gathered}$; divided by twice the perpendicular, gives

Let twice the perpendicular be a chord in a circle, the semidiameter of, which is equal to the diagonal. Then this proportion is put: If the semidiameter be equal to the diagonal in a circle in
which twice the perpendicular is a chord, what is the semidiameter in one wherein the like chord is equal to the flank? The result is the semidiameter of the circumscribed circle, provided the flanks be equal. But, if they be unequal, the central line is equal to half the dingonal of an obloug the sides of which are equal to the base and summit ; or half the diagonal of one, the sides of which are equal to the flanks. It is alike both ways.
For the triangle the demonstration is similar; since here the diagonal is the side.
For the triangle the demonstration is similar; since here the diagonal is the side.
This passage is cited in Bhascara's Liazati, $\S 190$.
, two and thirty-nine
Statement: 52. The upper sides about the greater diagonal are 39 and 25 ; the
755. The lower sides about the same arc 60 and 52 ; and the product 3120 The sum of both pronucts 4095 . The upper sides about the less diagonal are 25 and 52 ; the
product of which is 1300 . The lower sides about the same, 60 and 39 ; and the product 2340 .
 The product of opposite sides 60 and 25 is 1500 ; and of the two others 52 and 39 is 2028: the sum of both, 3528 . The two foregoing fractions, multiplied by this quantity, make 3969 and 136 ; the square-roots of which are 63 and 56 , the two diagonals of the trapezium. Cr. This method of finding the diagonals is founded on four oblongs. The brief hint of a demonstration here given is explained by Gan's'sa on Lillitati, § 191. Two triangles being assumed, the product of their uprights is one portion of a diagonal, and the pro--The manuscript bere exhibits 8 f : but is manifestly corrupt: as is the eext of the rule and in part the comment on it

Clearly the tradition of exposition of upapatti-s is much older and Bhäskarācärya and the later mathematicians and astronomers are merely following the traditional practice of providing detailed upapatti-s in their commentaries to earlier, or their own, works. The notion of upapatti is significantly different from the notion of 'proof' as understood in the Greek as well as the modern Western traditions of mathematics.

Srinivas, M. D. 2008. "Epilogue: Proofs in Indian Mathematics." In Gaṇita-Yukti-Bhāșā (Rationales in Mathematical Astronomy) of Jyeșthadeva, 1:267-310. Springer; Hindustan Book Agency.

The upapatti s of Indian mathematics, unlike the western tradition, are not formulated with reference to a formal axiomatic deductive system. (...) One often finds the statement iyam atra vāsanā, when the commentator is about to begin to explain/demonstrate something. Meaningwise this statement iyam atra vāsanā = atropapattih. Both the forms being equivalent, there is hardly any consideration for choosing one over the other.

Ramasubramanian, K. 2011. "The Notion of Proof in Indian Science." In Scientific Literature in Sanskrit, edited by Sreeramula Rajeswara Sarma and Gyula Wojtilla, 1:1-39. Papers of the 13th World Sanskrit Conference. Dehli: Motilal Banarsidass.

Brahmagupta Corrected astronomical treatise of Brāhma (Brāhmasphuțasiddhānta, abreviated as BSS) 628

BSS.2.2-5 provides a table of sines (jyä) with 24 values

BSS. 21 provides mathematical procedures to derive this table, and others

Earliest sine tables in Sanskrit sources date from the 5th century. The sine has a geometrical and a numerical component.

Bow-field dhanuḥ-kṣetra

Trigonometrical circle prescribed in a 7th century commentary. Mss KUOML 18063

BSS.2.2-5 provides a table of sines (jyä) with 24 values.

BSS.21.19-21 provides numerical rules to compute 3 initial sines (which correspond to $\sin 30^{\circ}, \sin 45^{\circ}$, sin 60°) knowing the radius of the circle

BSS.21.20-22 provides numerical rules to derive all other sines.

BSS.2.2-5 provides a table of sines (jyā) with 24 values.

BSS.21.19-21

2 ways to compute $\sin 30^{\circ}, \sin 45^{\circ}, \sin 60^{\circ}$

BSS.21.20-22
2 ways to compute all the other sines

Brahmagupta in the Corrected astronomical treatise of Brāhma (Brāhmasphuțasiddhānta, abreviated as BSS) 628

provides some kind of justification or proof not only for the values given in his sine table but also for the general rules to derive 24 sine values.

Āryabhaṭa 499 Āryabhațīya

Bhāskara I 629 Commentary on the Āryabhațīya (Āryabhațīyabhāṣya)

Ab.2.15 The distance between the gnomon and the base, with <the height of> the gnomon for multipier, divided by the difference of the <heights of the> gnomon and the base. Its
computation should be known indeed as the shadow of the gnomon <measured> from its foot.

Āryabhaṭa 499 Āryabhațīya

Bhāskara l 629 Commentary on the Āryabhațīya (Āryabhațīyabhāṣya)

BAB.2.15 This computation is a Rule of Three. How? If from the top of the base which is greter than the gnomon (AF) the size of the space between the gnomon and the base, which is a shadow ($\mathrm{FD}=\mathrm{BE}$) is obtained, then, what is obtained with the gnomon (DE)? The shadow $(E C)$ is obtained.

Āryabhața 499 Āryabhațīya
Bhāskara l 629 Commentary on the Āryabhațīya (Āryabhațīyabhāṣya)
 (Āryabhațīyabhāṣya)

BAB.2.15 This computation is a Rule of Three. How? If from the top of the base which is greter than the gnomon (AF) the size of the space between the gnomon and the base, which is a shadow ($F D=B E$) is obtained, then, what is obtained with the gnomon (DE)? The shadow $(E C)$ is obtained.

E

Āryabhața 499 Āryabhațīya

Bhāskara I 629 Commentary on the Āryabhațīya (Āryabhațīyabhāṣya)

Vocabulary concerning reasonings used:
āgama/upapatti tradition/proof pratyāyakarana verification
vyākhyāna explanation, commentary
pratipad- to explain, to establish
drś- to show, to teach

Pṛthūdhaka's Commentary with explanation (vāsanabhāṣya) fl. 860

on

Brahmagupta's Corrected astronomical treatise of Brāhma (Brāhmasphuțasiddhānta, abreviated as BSS) 628

in which he quotes

Āryabhața 499 Āryabhațīya
Bhāskara l 629 Commentary on the Āryabhațīya (Āryabhațīyabhāṣya)

Brahmagupta's Corrected astronomical treatise of Brāhma (Brāhmasphuțasiddhānta, abreviated as BSS) 628
Pṛthūdhaka's Commentary with explanation vāsanā (vāsanābhāṣya) fl. 860

> Sum of an arithmetical sequence as a stack of bricks, as a capital increasing or invested, as a sum of numbers positive or negative, and

Brahmagupta's Corrected astronomical treatise of Brāhma (Brāhmasphuțasiddhānta, abreviated as BSS) 628

Pṛthūdhaka's Commentary with explanation
vāsanā (vāsanābhasşa) fl. 860

$$
\mathrm{M}=-(15+1 / 2)
$$

-5							
-8							
-11							
-14							
-17							

as the sum of the areas of rectangles...
Explaining rules concerning sequences with algorithms taken from chapters concerned with combinatorics or algebra.

Traveling reasonings

Using diagrams as libraries of reasonings

Bhāskara II
Pṛthūdhaka
Brahmagupta

Bhāskaral
Āryabhaṭa

Bhāskara |I
Prthūdhaka
Brahmagupta

New reasonings in Kerala

Śañkara Väriyar
 (fl.ca. 1540-1556)

Quotes and wants to prove

 Mādhava (fl. ca. 1400)$c \approx \frac{4 d}{1}-\frac{4 d}{3}+\frac{4 d}{5}-\ldots+(-1)^{n} \frac{4 d}{2 n-1}+(-1)^{n+1} \frac{4 d n}{(2 n)^{2}+1}$

In his commentary on

New reasonnings in Kerala

```
Śañkara Väriyar
(fl.ca. 1540-1556)
```

If with a circumference of three thousand nine hundred and and twenty seven (3927) belongs to a diameter of one thousand two hundred and fifty (1250), how great is the circumference of a given diameter?

Quotes and wants to prove

Mādhava (fl. ca. 1400)

Sadh- to establish-the true result (labdhaṃ vāstavaṃ)

$c \approx \frac{4 d}{1}-\frac{4 d}{3}+\frac{4 d}{5}-\ldots+(-1)^{n} \frac{4 d}{2 n-1}+(-1)^{n+1} \frac{4 d n}{(2 n)^{2}+1}$

In his commentary on

If the multiplicands and the divisors were of one kind, then, after multiplying [the multiplicands] by the sum of the multipliers and dividing by the divisor once, the sum of the quotients would result.

Conclusion

We have seen reasonings that might not be proofs, mathematical proofs that were neither algebraical nor geometrical, but certainly algorithmic...and Sanskrit authors who used all sorts of reasonings some using different names for them...and some with no names at all...

The decolonizing of the history of mathematical proofs is possible only through a collective critical effort.
We have to be aware that standard histories still bear traces of the colonial, racist and white supremacist contexts in which they were forged. The good news is that we have ressources to write other new histories, that are also more stimulating!

