The Carbon Cycle behind Net Zero

Myles Allen

Frank Jackson Professor of the Environment, Gresham College

Professor of Geosystem Science, School of Geography and the Environment & Department of Physics,

University of Oxford

7th March 2023

CO₂ concentrations are rising

CO₂ concentrations over the course of a year

Global CO₂ concentrations on July 31st: 2020 - 411ppm; 2021 - 413ppm

CO₂ concentrations over the past millennium

And over the past 20 million years

Carbon dioxide and Antarctic temperatures over the past 800,000 years: but which is driving which?

We have plenty of evidence where modern carbon dioxide is coming from

Oxygen levels are falling (by a tiny fraction)

ΔO₂ (ppm)

And the fraction of fossil-origin isotopes in air is rising

Where the CO_2 is coming from

Where the CO_2 is coming from: added up over time

And where the CO_2 is going: added up over time

"If nature is absorbing half our CO₂ emissions, we need to halve emissions to stabilize concentrations..."

3 Solution – contraction and convergence

50% reduction from 1990 emissions?

"Long-term convergence of per capita emissions is ... the only equitable basis for a global compact on climate change"

Manmohan Singh, 30 June 2008

Introducing the Gresham Carbon Cycle Model

Three connected plastic tubes representing:

- 1. Additional carbon (in the form of CO_2) in the atmosphere above pre-industrial: level indicates concentration.
- Additional carbon in the biosphere and near-surface ocean: level indicates the increase in atmospheric CO₂ concentrations that would accompany this much extra carbon in these reservoirs in equilibrium.
- 3. Additional carbon in the deep ocean: level also indicates "equivalent atmospheric CO₂ concentration".

Why is the "carbon capacity" of the oceans so small?

- There are ~40 trillion tonnes of natural carbon Roger Revellein the oceans = 148 trillion tonnes of CO₂ Roger Revelle
 - -50 times the CO₂ in the atmosphere
 - 10 times global fossil fuel resources.
- So why can't we rely on the oceans to dilute away our CO_2 indefinitely?
- Answer: the oceans act as a giant buffer solution
 - Keeps ocean pH relatively stable, allowing life to exist
 - Reduces their ability to "dilute away" additional CO₂

So we can expect the impact of CO_2 emissions to last for a very long time: 100 years after emission

So we can expect the impact of CO_2 emissions to last for a very long time: 1,000 years after emission

So we can expect the impact of CO_2 emissions to last for a very long time: 40,000 years after emission

But how do atmospheric concentrations behave on "policy-relevant", say 10- to 200-year, timescales?

Response of our Gresham carbon cycle model to a steady emission of CO_2 , which is then switched off: CO_2

concentrations

But how do atmospheric concentrations behave on "policy-relevant", say 10- to 200-year, timescales?

Response of our Gresham carbon cycle model to a steady emission of CO_2 , which is then switched off:

Energy imbalance due to excess CO₂

Understanding the response of our Gresham carbon cycle model

• Changes in fluid depth in tube 1, assuming tube 2 has adjusted but tube 3 has not:

 $\Delta h_1 = k_1 \times \overline{E} \times \Delta t - \rho_2 \times \overline{h_1} \times \Delta t$

- $-\ \Delta h_1$ is the change in depth in tube 1 over a "shortish" time interval.
- $-\overline{E}$ is the average rate of fluid flowing in over that time-interval.
- $-\Delta t$ is the length of the time-interval.
- $-\overline{h_1}$ is the average depth of fluid in tube 1 over that time-interval.
- $-k_1$ is constant(ish), determines partitioning between tubes 1 & 2.
- $-~\rho_2$ is constant(ish), determines fractional rate of decline if $\overline{E}=0$

Understanding the response of our Gresham carbon cycle model: rearranging

• Changes in fluid depth in tube 1, assuming tube 2 has adjusted but tube 3 has not:

 $k_1 \times \overline{E} \times \Delta t = \Delta h_1 + \rho_2 \times \overline{h_1} \times \Delta t$

- $-\ \Delta h_1$ is the change in depth in tube 1 over a "shortish" time interval.
- $-\overline{E}$ is the average rate of fluid flowing in over that time-interval.
- $-\Delta t$ is the length of the time-interval.
- $-\overline{h_1}$ is the average depth of fluid in tube 1 over that time-interval.
- $-k_1$ is constant(ish), determines partitioning between tubes 1 & 2.
- $-~\rho_2$ is constant(ish), determines fractional rate of decline if $\overline{E}=0$

Understanding the response of our Gresham carbon cycle model: in terms of the carbon cycle

- Changes in energy imbalance (forcing) due to atmospheric CO₂ assuming biosphere has adjusted but deep ocean has not: $k_1 \times \overline{E_C} \times \Delta t = \Delta F_C + \rho_C \times \overline{F_C} \times \Delta t$
 - $-\Delta F_{C}$ is the change in CO₂ forcing over a "shortish" time interval.
 - $-\overline{E_C}$ is the average rate of CO₂ emissions over that time-interval.
 - $-\Delta t$ is the length of the time-interval.
 - $-\overline{F_{C}}$ is the average level of CO₂ forcing over that time-interval.
 - k_1 is constant(ish), determines short-term "efficacy" of emissions.
 - $-~\rho_{C}$ is constant(ish), determines fraction rate of forcing decline if $\overline{E}=0$

How atmospheric concentrations and hence energy imbalance (forcing) declines after zero emissions

Response of our Gresham carbon cycle model to a steady emission of CO₂, which is then switched off: **Energy imbalance** due to excess CO₂

You have seen an expression rather like this before

• Changes in temperature over decade to century timescales:

 $\Delta T = \kappa_F \times (\Delta F + \rho_F \times \overline{F} \times \Delta t)$

- $-\Delta T$ is the change in global average surface temperature.
- ΔF is the change in energy flow in due to change in greenhouse gases.
- $-\overline{F}$ is the average energy flow in due to level of greenhouse gases.
- $-\Delta t$ is the length of the time-interval.
- $-\kappa_F$ is a constant "Transient Climate Response to Forcing".
- $-\rho_F$ is a constant "Rate of Adjustment to Constant Forcing".

You have seen an expression rather like this before

• Changes in temperature over decade to century timescales:

 $\Delta T/\kappa_F = \Delta F + \rho_F \times \overline{F} \times \Delta t$

- $-\Delta T$ is the change in global average surface temperature.
- ΔF is the change in energy flow in due to change in greenhouse gases.
- $-\overline{F}$ is the average energy flow in due to level of greenhouse gases.
- $-\Delta t$ is the length of the time-interval.
- $-\kappa_F$ is a constant "Transient Climate Response to Forcing".
- ρ_F is a constant "Rate of Adjustment to Constant Forcing".

You have seen an expression rather like this before

Temperature response to forcing:

$$\Delta T/\kappa_F = \Delta F + \rho_F \times \overline{F} \times \Delta t$$

• Forcing response to CO_2 emissions: $k_1 \times \overline{E_C} \times \Delta t = \Delta F_C + \rho_C \times \overline{F_C} \times \Delta t$

So if $\rho_F \approx \rho_C$ and $F = F_C$ (focusing on the impact of CO₂) then ΔT is proportional to $\overline{E_C} \times \Delta t$, meaning...

• CO₂-induced warming over a multi-decade interval is proportional to cumulative CO₂ emissions over that interval.

So are we all done with the carbon cycle and net zero? Unfortunately, there is a problem...

- What do people actually mean by net CO₂ emissions?
 - Carbon cycle scientists: emissions minus removals resulting directly from ongoing human activities.
 - Emissions accountants: include CO₂ uptake on "managed land" that results indirectly from past emissions as a "negative emission".
 - Suddenly, all land is managed...

Our biosphere is already responding to past emissions: and we are counting on that response

1925

2011

"CO₂ fertilization" in a relatively undisturbed African savannah

Midgeley & Bond, 2015

Who owns these helpful forests?

Canada's forest sink 2001-2019: -950 MtCO₂e per year Canada's emissions 2001-2019: +730 MtCO₂e per year

Are these really equivalent?

Grassi et al, 2021

Carbon accounting rules allow anyone to take credit for natural uptake on "managed land"

Natural uptake used by carbon cycle scientists

Natural uptake in national & corporate accounts

What happens when everyone starts taking credit for CO₂ uptake on "managed oceans"?

30% of global oceans are in someone's Exclusive Economic Zone

So what do we mean by net zero CO_2 emissions?

Response of our Gresham carbon cycle model to a steady emission of CO_2 , which is then switched off:

Energy imbalance

So what do we mean by net zero CO_2 emissions?

Response of our Gresham carbon cycle model to a steady emission of CO_2 , which is then switched off:

Energy imbalance

Getting back to what we originally meant by net CO₂ emissions

- Allowing biological (and potentially ocean "blue carbon")
 CO₂ uptake to offset ongoing fossil fuel emissions opens a massive loophole in carbon accounting.
- Grassi et al (2021) argue (in effect) "don't worry, this loophole will shrink as the world warms and emissions decline"
 - Seems unfair on the next generation, and if we allow uptake due to past emissions to count against ongoing fossil fuel use, we won't stabilize temperatures anyway.

The solution: Geological Net Zero

- Geological Net Zero means any ongoing production of CO₂ from geological sources (like fossil fuel burning) is balanced by permanent (geological-timescale) CO₂ storage.
- The impact of fossil fuel emissions lasts forever, unless an equal quantity of CO_2 is permanently removed & disposed of.
- Geological Net Zero is needed to stabilize our carbon cycle **in addition to** ending deforestation & biosphere recovery.
- Nature-based Solutions have many wonderful benefits, but we can't turn rocks into trees forever.

So, will the UK Government commit to Geological Net Zero in the current Energy Bill?

Geological net zero

Government should **consider setting fossil fuel producers operating domestically a 10% storage obligation target to restore carbon dioxide to the geosphere by at least 2035**, separate to any investment on nature-based solutions.

Government should recognise the importance of geological net zero and work to align international ambitions toward geo zero by 2050, in line with net zero.

From Chris Skidmore, "Mission Zero: Independent Review of Net Zero", 2023

The Carbon Cycle behind Net Zero

How CO_2 emissions are distributed between atmosphere, biosphere and oceans. How fossil CO_2 has a permanent impact. How accounting for CO_2 in the biosphere is a bit of a mess.

Which is why we need **Geological Net Zero**.

7th March 2023