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The 2005 Conference

« For different levels of climate change
what are the key impacts?

* What would such levels imply in terms
of greenhouse gas stabilisation
concentrations and emission pathways
required to achieve such levels?
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Just published: equilibrium climate sensitivities
from the climateprediction.net experiment
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From our presentation at the 2005 conference

So what should our Tony have asked?

= Not: “What level of greenhouse gases in the
atmosphere is self-evidently ‘too much’?”

= But: “What injection of greenhouse gases into the
atmosphere is self-evidently ‘too much’?”

= A question we can answer, objectively: “If we want to
stay below X degrees, (with 95% confidence) how
much carbon can we afford to burn?”

= Apparently we don’t like to talk about this because
the answer makes people uncomfortable...

= Why focus on unanswerable questions just because
the word “stabilisation” appears in the UNFCCC?
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And another talk later that year

Conclusions

= The notion of a “sustainable per capita emission
rate” is indefensible: we can’t observe the things we
need to know to say what is sustainable.

= Maximum forecast warming is constrained by things
we can observe if we sign up to a “containment
scenario”, limiting total CO, emissions.

= With ~500GtC released already, we can release 600-
700 more GtC before the risk of CO,-induced
warming >2°C exceeds 20%: extrapolating past land-
use/fossil mix, this means a total fossil emissions
of...

= One Trillion Tonnes.
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18 years on

1.5°C 1.7°C 2°C
(50% likelihood) (50% likelihood) (50% likelihood)

Global Carbon
Project, 2022
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1.02 trillion tonnes of carbon



So Dave Frame and | got the principles right, but
didn’t do that well on the numbers...

We claimed an 80% chance of staying below 2°C even after
burning 1.1-1.2 trillion tonnes of carbon.

Modern estimates give a 50% chance of staying below 2°C
after burning 1 trillion tonnes of carbon.

The problem was that Dave and | had an over-optimistic
carbon cycle (Bill Nordhaus’ model from the early DICE).

And neither of us knew anything about the carbon cycle...



That very same year, Pierre Friedlingstein and
Susan Solomon almost hit on the same result...
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Then everyone got distracted...




...although r
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levant papers continued to app
ear...
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...and suddenly got busy again in 2009
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Peak CO,-induced warming relative to pre-industrial (°C)

Warming is proportional to cumulative CO,

emissions

Relative likelihood of peak warming versus cumulative emissions

Temperature change (°C)
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CO, (ppmv)

Surface Warming (K)

And little further warming or cooling occurs after
CO, emissions reach net zero
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In a single figure: cumulative carbon dioxide
emissions determine peak warming...
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Understanding why with our coupled Gresham
climate-carbon-cycle model

Stabilizing atmospheric CO, concentrations

Emissions input Carbon cycle model Temperature model
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Allows emissions to continue But temperatures keep rising



Understanding why with our coupled Gresham
climate-carbon-cycle model

And net zero CO, emissions Stabilising temperatures
Emissions input Carbon cycle model Temperature model
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Understanding why with our coupled Gresham
climate-carbon-cycle model

For the same cumulative amount of CO, And we get the same temperature

Emissions input Carbon cycle model Temperature model
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Understanding why with our coupled Gresham
climate-carbon-cycle model

For half the cumulative amount of CO, We get half the warming
Emissions input Carbon cycle model Temperature model
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Two complications we can’t represent in our

Gresham models — but they cancel out!

Increasing airborne fraction
balances Arrhennius’ curve
to give...

0.45*0.18°C warming per
trillion tonnes of CO,
emitted.
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The reason all this matters: fossil fuel reserves
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Temperature change relative to 1861-1880 (°C)
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The Trillionth Tonne
of Carbon

Why it took us a surprisingly long time to nail
down a surprisingly simple result.

How complex systems can display
remarkably simple behaviour.

Why net zero carbon dioxide
., emissions are needed to halt




