Foster + Partners The Future of Tall Buildings

Roger Ridsdill Smith

Global CO₂ Emissions

Source : Global Alliance for Buildings and Construction 2018 Global Status Report

The Future of Tall Buildings

- History
- Technology
- Sustainability
- The Future

The Future of Tall Buildings

- History
- Technology
- Sustainability
- The Future

Giza Pyramids | 2600 BC | 146m

Alexandria lighthouse | 247 BC | 120m

Lincoln Cathedral | 1311 | 160m

Cathedrals

Strasbourg Cathedral | 1439 | 142m

Cologne Cathedral | 1880 | 157m

Otis Safety Elevator | 1854

Bessemer Converter | 1856

Home Insurance Building | 1891 Architect : William Le Baron Jenney | Height : 42m

Fisher Building, Chicago | 1896 Architect : D H Burnham and Co. | Height : 84m

Reliance Building, Chicago | 1894 Architect : CB Atwood of Burnham and Co. | Height : 62m

seems ever as though the life and the form were absolutely one and inseparable, so adequate is the sense of fulfilment.

Whether it be the sweeping eagle in his flight, or the open appleblossom, the toiling work-horse, the blithe swan, the branching oak, the winding stream at its base, the drifting clouds, over all the coursing sun, form ever follows function, and this is the law. Where function does not change, form does not change. The granite rocks, the everbrooding hills, remain for ages; the lightning lives, comes into shape, and dies, in a twinkling.

It is the pervading law of all things organic and inorganic, of all things physical and metaphysical, of all things human and all things superhuman, of all true manifestations of the head, of the heart, of the soul, that the life is recognizable in its expression, that form ever follows function. *This is the law*.

Shall we, then, daily violate this law in our art? Are we so de-

Chicago | 1927

Manhattan, New York | 1931

The Future of Tall Buildings

- History
- Technology
- Sustainability
- The Future

Foster + Partners | Structures | Recent Tall Buildings

Lusail Towers, Doha | Foster + Partners | 4 towers Height : 257 and 300m

Lusail Towers Structural Model

Lusail Towers Structural Principles

Earthquake Loads

Lusail Towers | Construction

Lusail Towers | Construction

Reinforced concrete core

Outrigger floor with perimeter truss

Lusail Towers

425 Park Avenue, New York | Foster + Partners | Height : 254m

425 Park Avenue | Foster + Partners

- New York
- 254m tall
- Competition 2012

425 Park Avenue | Foster + Partners Structural Principles

425 Park Avenue | Foster + Partners Structural Principles

0 0 500,000 1,000,000 1,500,000 2, OTM [ft-kips]

Structural forces under vertical loads Bending moment under wind load

425 Park Avenue | Foster + Partners

China Merchants Bank Tower, Shenzhen | Foster + Partners | Height : 388m

China Merchants Bank tower | Foster + Partners

- Shenzhen
- 388m tall

China Merchants Bank Tower | Foster + Partners Structural Principles

- Side core •
- 20m span column-free ٠ office space
- Fire water tank on the ٠ roof used as a Tuned Liquid Damper to reduce wind-induced motion
- Performance-based ٠ seismic design

moment frame

truss and transfer truss

Lateral force resisting system of the HQ tower China Merchants Bank Tower | Foster + Partners Earthquake Timeline

China Merchants Bank Tower | Foster + Partners | Construction

The Future of Tall Buildings

- History
- Technology
- Sustainability
- The Future

What is Embodied Carbon?

Carbon dioxide equivalent (CO₂e): A measurement used to compare the emissions from various greenhouse gases on the basis of the global warming potential (GWP)

Symbol	Name	Common sources	Atmospheric lifetime (years)*	Global warming potential	% of US emissions
CO2	Carbon dioxide	Fossil fuel combustion, forest clearing, cement production, etc.	50-200	1	79.9
CH₄	Methane	Landfills, production and distribution of natural gas and petroleum, fermentation from the digestive system of livestock, rice cultivation, fossil fuel combustion, etc.	12	21X	9.5
N ₂ O	Nitrous oxide	Fossil fuel combustion, fertilisers, nylon production, manure, etc.	150	310X	5.8
HFCs	Hydrofluoro- carbons	Refrigeration gases, aluminium smelting, semiconductor manufacturing, etc.	264	Up to 11,700X	
PFCs	Perfluoro- carbons	Aluminium production, semiconductor industry, etc.	10,000	Up to 9200X	1.8
SF ₆	Sulphur hexafluoride	Electrical transmission and distribution systems, circuit breakers, magnesium production, etc.	3,200	Up to 23,900X	
*Standard i	ndustry classificati	on			

Whole Life Carbon

Emissions from all lifecycle phases

Embodied Carbon

 Emissions associated with materials and construction processes throughout the whole lifecycle of a building Operational Carbon

The emissions associated with the energy used to operate the building

Household Carbon Footprint

Greenhouse gas emissions from purchase and use of motor vehicles, public transit, air travel, household energy, food, water, consumer goods and services

+

Household Carbon Footprints | United States East Coast

Source :

- Jones and Kammen, Spatial Distribution of US household Carbon
 Footprints reveals suburbanisation undermines greenhouse gas benefits of urban population density,
 Environmental Science and Technology, 2013
 - UC Berkeley CoolClimate Network, Carbon footprints profiles of all U.S. zip codes, cities, counties and states, <u>https://coolclimate.berkeley.edu</u>

62
46.5
46.5
18.5

Household Carbon Footprints | New York

Source :

- Jones and Kammen, Spatial Distribution of US household Carbon Footprints reveals suburbanisation undermines greenhouse gas benefits of urban population density, *Environmental Science and Technology, 2013*
- UC Berkeley CoolClimate Network, Carbon footprints profiles of all U.S. zip codes, cities, counties and states, <u>https://coolclimate.berkeley.edu</u>

tCO₂e /household by ZCTA

USA | Average Household Carbon Footprint (HCF)

The red line in each figure is the mean of all HCF for that population density.

31531 Zip Codes

10093 US Cities and Towns

Source : Jones and Kammen, Spatial Distribution of US household Carbon Footprints reveals suburbanisation undermines greenhouse gas benefits of Urban Population Density, 2013

USA | Suburb – City Difference in Emissions

Carbon Emissions are lower for people living in central cities than suburbs

Suburb-City Difference in Emissions Electricity

Suburb-City Difference in Emissions from Heating

Suburb-City Difference in Emissions from Driving and Public Transport

Source: Green Cities, Brown suburbs, City Journal, Glaeser, 2009

Sydney | Emissions for Housing Types

Source: The Density Trade-off: Colin Beattie, Peter Newman *Curtin University Sustainability Policy (CUSP) Institute, Fremantle, WA, Australia, 2011*

Sydney | Emissions for Housing Types

Source: The Density Trade-off: Colin Beattie, Peter Newman *Curtin University Sustainability Policy (CUSP) Institute, Fremantle, WA, Australia, 2011* Whole Life Carbon | Tall Buildings vs Suburbs

Source : Transitioning to an integrated whole life approach to sustainability in the built environment *World Green Building Council/Chris Trott, Foster + Partners* Whole Life Carbon | Tall Buildings vs Suburbs

Whole Life Carbon without Transport Consideration

Source : Transitioning to an integrated whole life approach to sustainability in the built environment *World Green Building Council/Chris Trott, Foster + Partners*

Building

Whole Life Carbon | Tall Buildings vs Suburbs

Whole Life Carbon with Transport Consideration

Source : Transitioning to an integrated whole life approach to sustainability in the built environment *World Green Building Council/Chris Trott, Foster + Partners*

Tall Buildings vs Suburbs

Los Angeles

1901

The Future of Tall Buildings

- History
- Technology
- Sustainability
- The Future

Correlation Between Embodied Carbon and Embodied Energy

Embodied Energy (MJ/kg)

Estimated Annual Material Consumption | 2002 – 2005

Eco – efficient cements UNEP report 2017

Annual Steel and Cement Production

Eco – efficient cements UNEP report 2017

Concrete

Volumetric Constituents

Embodied Carbon Constituents

Availability of Secondary Cementitious Materials

Classic SCMs – fly ash and slag are only around 15% of current cement production, will drop to < 10% in near future

Source: Professor Karen Scrivener, Ecole Polytechnique de Lausanne, 2022

270 Park Avenue | Foster + Partners | Site location over underground railways

270 Park Avenue | Foster + Partners | Ground Level Structure

270 Park Avenue | Foster + Partners Competition Structural Analysis

Axial force diagram at section through core (a) and East face bracing (b) due to N-S wind only

270 Park Avenue | Foster + Partners

270 Park Avenue | Foster + Partners Construction

270 Park Avenue | Foster + Partners Construction

Urban Density and Energy Consumption

Source: adapted from Newman, P. and J. Kenworthy (1999) Sustainability and Cities: Overcoming Automobile Dependence, New York: Island Press.

Embodied Carbon Typical Values

All figures in kg CO2/kg of building material

Download: http://www.circularecology.com/ice-database.html

of Demolition Waste diverted* away from Landfill

**reused, recycled, or upcycled material streams*

	Interior "Soft" Demolition	Exterior Demolition	Structural Demolition	Below Grade Demolition
% Diverted from Landfill	90.9%	97.4%	97.8%	96.7%
% Landfilled	9.1%	2.6%	2.2%	3.3%
% Overall Diverted from Landfill	97.0%			

Builder : George A. Fuller

