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Geometry: the study of shapes and their
properties such as size, distance, curvature...
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36" International Mathematical Olympiad

First Day - Toronto - July 19, 1995
Time Limit: 4% hours

. Let A, B,C,D be four distinct points on a line, in that order. The
circles with diameters AC and BD intersect at X and Y. The line XY
meets BC at Z. Let P be a point on the line XY other than Z. The
line CP intersects the circle with diameter AC' at C' and M, and the
line BP intersects the circle with diameter BD at B and N. Prove
that the lines AM, DN, XY are concurrent.

. Let a, b, c be positive real numbers such that abc = 1. Prove that

1o, 1,1 3
adb+c) b(cta) SEla+d) =2

. Determine all integers n > 3 for which there exist n points Ay,..., A,
in the plane, no three collinear, and real numbers r4,...,r, such that
for 1 <4< j <k < n, the area of AA;A; Ay is vy + 15 + 1.

36" International Mathematical Olympiad

Second Day - Toronto - July 20, 1995
Time Limit: 4% hours

. Find the maximum value of z for which there exists a sequence zg, x1 . . . , T1995
of positive reals with xg = x1995, such that for s = 1,...,1995,
1
Z;1+ = 2.’.31 =t —,
Zi-1 Z;

. Let ABCDEF be a convex hexagon with AB = BC'=CD and DE =
EF = FA, such that /BCD = /EFA = ©/3. Suppose G and H are
points in the interior of the hexagon such that /AGB = /DHE =
27/3. Prove that AG+ GB+ GH +DH + HE > CF.

. Let p be an odd prime number. How many p-element subsets A of
{1,2,... 2p} are there, the sum of whose elements is divisible by p?

Points distribution - IMO 1995 Gold medal
Silver medal
Bronze medal

Nothing
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1995 Iranian IMO team

“the education system in Iran is not the way people might imagine
here. As a graduate student at Harvard, I had to explain quite a few
times that I was allowed to attend a university as a woman in Iran.”

— Maryam Mirzakhani, 2008 interview



I met Maryam in 1993. I had an appointment to meet
Ebad Mahmoodian at IPM, the Institute for Research
in Fundamental Sciences in Tehran. When I got there,
Mahmoodian told me that he wanted to check some
math that a high school student had handed to him
and he asked if I'd be willing to help him. So, I
spent the morning with Mahmoodian going over the
arguments with him. Mahmoodian was teaching a
summer course on grapn ueory ror gitea scnooi
children at Sharif University. One of the topics he had
talked about was decomposing graphs into disjoint
unions of cycles, including the rather curious example
of decomposing a tripartite graph into a union of
5-cycles. This was considered the first difficult case
of the general problem. Mahmoodian had asked the
students to find examples of tripartite graphs that
were decomposable as unions of 5-cycles, offering
one dollar for each new example. By the time of the
next lecture, Maryam had found an infinite family of
examples. She had also found a number of necessary
and sufficient conditions for the decomposability.
These were the results that Mahmoodian and I checked
that day. Checking everything carefully took the whole
morning. At the time we joked that Maryam was
obviously smart, but not that smart; otherwise she
could have milked Mahmoodian for all he was worth
by revealing one example a day.

Those of us who knew Maryam in person probably
have a hard time thinking of her as “the genius”
that she has been portrayed as in the media. She
didn’t have any of the pretensions of the stereotypical
genius of children’s books. She had the same qualms
and worries as the rest of us: she too had wondered
at some point whom to work with, whether she would
finish her thesis, whether she would find a decent
academic job, whether she could balance the demands
of motherhood with being a professor, whether she’d
be tenured at some point in this century. And she was
a lovely person. We loved her for who she was, and we
would have loved her just the same even without her
honors and awards.

Ramin Takloo-Bighash is professor of mathematics at
the University of Illinois-Chicago. His email address is
rtakloo@math.uic.edu.

Notices of the AMS, November 2018

DECOMPOSITION OF COMPLETE
TRIPARTITE GRAPHS INTO
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Graphs: models for a huge array of relations and processes.
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A graph is complete if every pair of vertices is
connected by exactly one edge.

Graph decomposition:

breaking a graph up into smaller, more understandable pieces.
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Decomposing a graph can help understand the
structure and properties of the graph!
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Decomposing a graph can help understand the
structure and properties of the graph!

For example, by writing this graph as a
decomposition of 8 complete graphs on 4 vertices,
we turn the problem of scheduling 48 matches into

a problem of scheduling 6 matches, 8 times.

X

XXX

XIXHEXTEX




Group A Group B Group C Group D

T LT IS o

Group E Group F Group G Group H

B = 1 H:1 %_—

Decomposing a graph can help understand the
structure and properties of the graph!

For example, by writing this graph as a
decomposition of 8 complete graphs on 4 vertices,
we turn the problem of scheduling 48 matches into
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TRIPARTITE GRAPHS INTO |
5-CYCLES :
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Sharif University of Technology

Complete tripartite means the vertices are divided into three groups, with
exactly one edge between any two vertices in different groups.

Mahmoodian’s question:
can you find some complete tripartite graphs which can be decomposed into 5-cycles?
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A few quick tries and right away we see:

we need the total number of edges to
be divisible by 5.
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Mahmoodian’s question: can you find some complete
tripartite graphs which can be decomposed into 5-cycles?

A few quick tries and right away we see:
we need the total number of edges to be divisible by 5.

This complete tripartite graph with 5 edges

cannot be decomposed into 5-cycles.
This complete tripartite graph with 15

edges can be decomposed into 5-cycles!



summer course on graph theory for gifted school
children at Sharif University. One of the topics he had
talked about was decomposing graphs into disjoint
unions of cycles, including the rather curious example
of decomposing a tripartite graph into a union of
5-cycles. This was considered the first difficult case
of the general problem. Mahmoodian had asked the
students to find examples of tripartite graphs that
were decomposable as unions of 5-cycles, offering
one dollar for each new example. By the time of the
next lecture, Maryam had found an infinite family of
examples. She had also found a number of necessary

and sufficient conditions for the decomposability.

Mathematics as a science and art which is both experimental and visual.



Riemann surfaces:
under the microscope, they look familiar.

Earth’s surface as
a Riemann surface
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Riemann surfaces:

under the microscope, they look familiar.
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Earth’s surface as
a Riemann surface

If we allow ourselves to stretch and squish these surfaces, the
ones without boundary are completely characterized by the
number of handles they have, known as the genus of the surface.




Riemann surfaces come with geometry: a description of how to measure distances,
angles, and curvature, in a way that is intrinsic to the surface.

In genus >0, this is *not* the notion of distance or curvature that you see in my pictures.
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Riemann surfaces come with geometry: a description of how to measure distances,
angles, and curvature, in a way that is intrinsic to the surface.

In genus >0, this is *not* the/notion of distance or curvature that you\see in my pictures.
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One type of curve can admit many different geometries: how can we understand them?

Decomposition! But if we cut up a surface into smaller pieces, we introduce a boundary...



One type of curve can admit many different geometries: how can we understand them?




No problem. In fact, all these surfaces are built out of “pairs of pants”:

If we want to use a pair of pants decomposition to understand the geometry of the
surface, we’d better be able to connect things back up in a geometric way.

We do this using geodesics: an analogue of straight line paths on the surface.



What is a closed geodesic?

A geodesic is a walk you take on the
surface with no acceleration - no turns,
no speeding up, no slowing down. Itis
closed if you end up where you started!

A

.......
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Geodesics on a sphere




What is a closed geodesic?

A geodesic is a walk you take on the
surface with no acceleration - no turns,
no speeding up, no slowing down. Itis
closed if you end up where you started!

A

A ladybird following a geodesic on a torus



So understanding a surface is tightly bound to understanding its closed geodesics!

— This (and more) was precisely the
I e 1, 1 o0 Tnventiones . ,
mathematicae topic of Maryam’s PhD work.

Growth of the number of simple
AMERICAN MATH, closed geodesics on hyperbolic surfaces
0 0 : AMERICAN MATHEMATICAL SOCIETY
Simple geodesics and Weil-Petersson volumes of Volume 20, Number 1, January 2007, Pages 1-23
moduli spaces of bordered Riemann surfaces § 0894-0347(06)00526-1
Article electronically published on March 8, 2006 By MARYAM MIRZAKHANI
Maryam Mirzakhani

Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton,

NJ 08544, USA (e-mail: mmirzakh@math.princeton. edu) WEIL-PETERSSON VOLUMES AND INTERSECTION THEORY

ON THE MODULI SPACE OF CURVES

MARYAM MIRZAKHANI




Let’s dig a little deeper...

We can count prime numbers, even though there are infinitely many of
them, by imposing a length bound: how many primes have at most L digits?

TN
P i
L= | ¢ : (i
N
-~ \‘.
| 5 C 3 74 ay )
| % 2 ya | T NS /
> C )
i S ' - ( YR
NG
- (3 & .
J - I 3N
+ - 4 Yol ies i2::1F )




Let’s dig a little deeper...
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Geodesics can also be counted, once we restrict by length!

We can count geodesics on a hyperbolic surface, even though there are
infinitely many of them, by imposing a length bound: how many geodesics
have length at most L?
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A more difficult question: simplicity.

A simple closed geodesic A non-simple closed geodesic




A more difficult question: simplicity.

A simple closed geodesic A non-simple closed geodesic

Why is this tougher? Let’s think about the torus.
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We can count torus geodesics
by counting straight lines in
the square which start and
end at a red dot.



>

A better model:
many copies of the square.

We can count torus geodesics
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end at a red dot.
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We can count torus geodesics
by counting straight lines in
the square which start and
end at a red dot.

A better model:
many copies of the square. 1

Better yet: infinitely

many copies of the square! ¢ & 51




Counting closed geodesics on the Counting simple closed geodesics on the
torus of bounded length torus of bounded length

Counting integer points in a disk Counting primitive integer points in a disk




Closed geodesics on the torus Simple closed geodesics on the torus

Counting integer points in a disk Counting primitive integer points in a disk
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Maryam'’s thesis work included a spectacular new result on counting

simple closed geodesics on hyperbolic surfaces:

THEOREM 1.1. For any rational multi-curve -y,

lim =X (L, 7)

L—oo W = n'Y(X)’

where ny: Mgy, — Ry is a continuous proper function.
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Here the closed primitive geodesic count
is in blue, and the simple closed primitive
geodesic count is in purple.




The powerful idea that Maryam used to
such great effect was to consider the

= n,(X), counting problem across all possible
geometries at once, sorting the
geodesics into groups which are really

THEOREM 1.1. For any rational multi-curve -,

. SX (L7 7)
A e 6+2n

where n,: My, — Ry is a continuous proper function.

topological objects.



The powerful idea that Maryam used to
such great effect was to consider the

= ny(X), counting problem across all possible
geometries at once, sorting the
geodesics into groups which are really

THEOREM 1.1. For any rational multi-curve -,
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where ny: Mg, — Ry is a continuous proper function.

topological objects.

Imagine counting lattice points in parity groups.

The density of the set of green points is the
same, no matter where we look.
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o © (%y) => (x+2y,y)
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Even better, a change in geometry which doesn’t change the parity of coordinates will not
change the density of green points, and will change the length in a way we can understand.



e
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o © (%y) => (x+2y,y)
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Even better, a change in geometry which doesn’t change the parity of coordinates will not
change the density of green points, and will change the length in a way we can understand.

Maryam implemented this idea, splitting geodesics into mapping class orbits, and relating
the densities to computations of volumes of spaces of all possible geometries.



A fun application: probabilities of topological types of geodesics.

Q: what is the probability that a
simple closed geodesic on a surface
of genus 2 is separating?
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A fun application: probabilities of topological types of geodesics.

0~ri~‘l\~ ol-l/k\‘c,
Q: what is the probability that a / At i S o
simple closed geodesic on a surface

of genus 2 is separating?

A: Maryam’s work tells us that the |
answer should be independent of rm—w\ow*\w&
the geometry we put on the surface! T,QMCS

In fact, a long simple closed geodesic is 48 times
more likely to be non-separating than separating.




The technical heart of Maryam’s early work was a deep understanding of the space of all
possible geometries on a surface: the moduli space of genus g surfaces with n punctures.




The technical heart of Maryam’s early work was a deep understanding of the space of all
possible geometries on a surface: the moduli space of genus g surfaces with n punctures.

// We study moduli spaces because:
* We want to understand the
objects they contain
'\\ « They are often geometrically
/\\ interesting themselves
rodoll Space * They help us understand how to
T | @% deform objects
g




Maryam’s work with Alex Eskin and Amir Mohammadi - orbits of translation surfaces

The study of translation surfaces
arises from visualizing billiard
trajectories as straight-line paths.




Maryam’s work with Alex Eskin and Amir Mohammadi - orbits of translation surfaces
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Two translation surfaces related to the pentagon

The study of translation surfaces
arises from visualizing billiard
trajectories as straight-line paths.




N

Unfolding a rectangular billiards table



Diagram One

Unfolding a rectangular billiards table



We see that a billiard trajectory becomes a straight-line trajectory, if we allow
ourselves to reflect the polygon!



Translation surfaces are constructed by gluing parallel edges of polygons.
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Translation surfaces are constructed by gluing parallel edges of polygons.

I
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We have seen some before! ....topologically.

But away from the corner points,

the geometry of a translation
surface is flat and comes from the

polygons which made it.




Y

/ / Applying a linear map to a polygon can
give a new translation surface, but it

/ / shares many properties with the old one.

- >
(but not all properties...)




Q: what do these orbits of translation surfaces related by linear changes
look like in the moduli space of all translation surfaces of a given type?

Generally, describing orbits is a very hard problem! Orbits are often complicated or fractal.
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Generally, describing orbits is a very hard problem! Orbits are often complicated or fractal.

A strange attractor with Cantorian cross-section




Q: what do these orbits of translation surfaces related by linear changes
look like in the moduli space of all translation surfaces of a given type?

An idea of the complexity level of answering this question...
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Q: what do these orbits of translation surfaces related by linear changes
look like in the moduli space of all translation surfaces of a given type?

INVARIANT AND STATIONARY MEASURES FOR THE SL(2,R)
ACTION ON MODULI SPACE

ALEX ESKIN AND MARYAM MIRZAKHANI

ABSTRACT. We prove some ergodic-theoretic rigidity properties of the action of
SL(2,R) on moduli space. In particular, we show that any ergodic measure invariant
under the action of the upper triangular subgroup of SL(2,R) is supported on an
invariant affine submanifold.

The main theorems are inspired by the results of several authors on unipotent
flows on homogeneous spaces, and in particular by Ratner’s seminal work.

ISOLATION, EQUIDISTRIBUTION, AND ORBIT CLOSURES FOR
THE SL(2,R) ACTION ON MODULI SPACE.

ALEX ESKIN, MARYAM MIRZAKHANI, AND AMIR MOHAMMADI

ABSTRACT. We prove results about orbit closures and equidistribution for the
SL(2,R) action on the moduli space of compact Riemann surfaces, which are anal-
ogous to the theory of unipotent flows. The proofs of the main theorems rely on the
measure classification theorem of [EMi2] and a certain isolation property of closed
SL(2,R) invariant manifolds developed in this paper.

A: they are not complicated and fractal: their closures are nice spaces.




A fun application (the “illumination problem”):
Can a billiard ball reach every point on the table?

Rectangular table?

Infinity Mirrored Room — Filled with the Brilliance of Life

work of Yayoi Kusama


https://www.tate.org.uk/art/artworks/kusama-infinity-mirrored-room-filled-with-the-brilliance-of-life-t15206

A fun application (the “illumination problem”):
Can a billiard ball reach every point on the table?

Rectangular table: yes!
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work of Yayoi Kusama


https://www.tate.org.uk/art/artworks/kusama-infinity-mirrored-room-filled-with-the-brilliance-of-life-t15206

A fun application (the “illumination problem?”):
Can a billiard ball reach every point on the table?

A room with points that cannot be connected



A fun application (the “illumination problem?”): B

Can a billiard ball reach every point on the table? oo

45° '

An unfolding of an isosceles triangle

A room with points that cannot be connected A




As a consequence of the work of Eskin-Mirzakhani-
Mohammadi, a ball on a rational polygonal billiard table only
has finitely many inaccessible points.

=

N

Notice the illuminability property is preserved by the linear
transformations that they studied - so their information
about the moduli space tells us something about any
particular choice of billiard table!



As a consequence of the work of Eskin-Mirzakhani-
Mohammadi, a ball on a rational polygonal billiard table only
has finitely many inaccessible points.
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Notice the illuminability property is preserved by the linear
transformations that they studied - so their information
about the moduli space tells us something about any
particular choice of billiard table!




A related application: the blocking problem.
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Clay Research Award 2015

The beauty of mathematics only shows
itself to more patient followers.

— Maryam Mirzakhani, 2008

Ehe New ork Times

Maryam Mirzakhani, Only Woman to
Win a Fields Medal, Dies at 40

Maryam Mirzakhani in 2014. Stanford University
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