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Origins of graph theory

The origins of graph theory are humble, even        
frivolous.  Whereas many branches of mathematics 

were motivated by fundamental problems of calculation, 
motion and measurement, the problems which led to the 
development of graph theory were often little more than 

puzzles, designed to test the ingenuity rather than to 
stimulate the imagination. 

But despite the apparent triviality of such puzzles,      
they captured the interest of mathematicians, with the 

result that graph theory has become a subject rich in 
theoretical results of a surprising variety and depth.

[Road/rail networks, operations research, neural nets, computing]    



Six problems

1. Königsberg bridges problem 

2. Knight’s-tour problem

3.  Gas, water, & electricity problem

4. Good Will Hunting problem

5.  Minimum connector problem

6.  Map-colour problem



What is a graph?

A graph consists of vertices joined by edges.

Joining all vertices gives a complete graph (such as K5)

The degree of a vertex is the number of emerging edges. 
If all degrees are the same, the graph is regular; 

a cubic graph is regular of degree 3.

Some graphs have cycles – those without are trees.
A bipartite graph has all cycles of even length. 



1.  Königsberg bridges problem

Is there a walk that crosses all seven 
bridges exactly once?



Leonhard Euler (1736)

In addition to that branch of geometry which 
is concerned with magnitudes, there’s another branch, 

previously almost unknown, which Leibniz 
first mentioned, calling it the geometry of position. 
Concerned only with the determination of position 

and its properties, it doesn’t involve measurements, 
nor calculations made with them.             

It hasn’t yet been satisfactorily determined what 
problems are relevant to this geometry, or what methods 
should be used in solving them.  So when a problem was 

recently mentioned, I had no doubt that it was concerned 
with the geometry of position . . . 



Euler’s solution

Here the numbers are 
A(8), B(4), C(4), D(3), 
E(5), F(6), so there’s 
a walk from D to E.

Whenever we enter a 
region, we must be able 
to leave it – requiring 2 
bridges – giving an even 

number of bridges 
around each region. 

But here these numbers 
are odd (5, 3, 3, 3), so the 

walk cannot be done.    



The modern 
approach 

(by graph theory)

Can you draw this
picture in one 

continuous penstroke
without repeating 

any line?

– NOT drawn by Euler





Diagram-tracing puzzles



2.  Knight’s-tour problem

Can a knight visit all the squares of 
a chessboard (by knight’s moves) 
and return to its starting point?



Solving the 
knight’s-tour 

problem



The intelligent fly



The Icosian
game

Sir William Rowan 
Hamilton

A voyage round the world



“If we cut in two 
the cell of a bee”,

is this Hamiltonian?

Revd. Thomas P. Kirkman



William T. Tutte
On Hamilton circuits

A problem of 1880: 

Does every cubic polyhedron 
graph have a Hamiltonian cycle?

Kirkman (1884):
“It mocks alike at doubt 

and proof.”

No:  in 1946, Tutte published      
this counter-example 

with 46 vertices.



3.  Gas, water, & electricity problem

Can we connect the three houses A, B, C
to the three utilities gas, water, electricity

without any connections crossing?
(Here, house B is not joined to water)



The utilities problem

Is this graph K3,3 planar?

Look at the 6-cycle 
A-G-B-W-C-E-A, and try 
to add the connections 

A-W, G-C, and E-B . . .



Planar graphs & Kuratowski’s theorem

A graph is planar if and only if 
it doesn’t contain K5 or K3,3



Euler’s 
polyhedron 

formula: 
F + V = E + 2

great rhombicosidodecahedron
62 faces, 120 vertices, 180 edges

and 62 + 120 = 180 + 2

cube
6 faces, 8 vertices, 

12 edges
and 6 + 8 = 12 + 2

dodecahedron
12 faces, 20 vertices, 

30 edges
and 12 + 20 = 30 + 2



Euler’s polyhedron formula



The five regular polyhedra

4 + 4 = 6 + 2     8 + 6 = 12 + 2      6 + 8 = 12 + 2    20 + 12 = 30 + 2   12 + 20 = 30 + 2 



Polyhedra with
pentagons 

& hexagons



Soccer balls have 
exactly 12 pentagons

Count the faces:  for a soccer ball with 
p pentagons and h hexagons,  F = p + h.

Count the edges around the faces:  2E = 5p + 6h.
Count the (three) edges at each vertex:  

3V = 2E = 5p + 6h.

Because  F + V = E + 2,  
(p + h) + (5/3p + 2h) =  (5/2p + 3h)  +  2.

The h’s cancel, leaving  5/3p  +  p =  5/2p  +  2.
So p = 12,  and  there are exactly 12 pentagons.



4.  Good Will Hunting problem

“Draw all the homeomorphically irreducible trees 
with 10 vertices” 



Counting trees

Alkanes  CnH2n+2 have a 
tree structure. How many 

have n carbon atoms?

The six trees with 6 vertices. 
How many trees have 100 vertices? 

How many ‘homeomorphically
irreducible’ trees have 10 vertices?



Labelled trees

Arthur Cayley, 1889:

The number of n-vertex 
labelled trees is nn–2 :

n = 3: 3     n = 4: 16    n = 5: 125



5.  Minimum connector problem

We wish to connect several cities by links 
(canals, railway lines, air routes, etc.),

but connection costs are high. 
How can we minimize the total cost, 

but still get from any city to any other?

Trees with total costs:  23, 21, 20 



Greedy algorithm

At each stage 
choose the cheapest link 

that creates no cycle.

Choose AE (cost 2)

Choose EC (cost 3)
We can’t now choose AC (cost 4)

So choose CB (cost 5)

We can’t choose AB, EB (cost 6)

So choose ED (cost 7)

Total cost: 2 + 3 + 5 + 7 =17  



Connecting the 48 US States



Travelling salesman problem

A traveling salesman wishes to visit a number of cities 
and return to the starting point, minimizing the total 

travelling cost.

Total costs 
29, 29, 28

Trial and error: 

total cost 26 



Travelling the 48 States



6. Colouring 
maps

Can every map be coloured with 
four colours so that adjacent 

regions are coloured differently?



Appel & Haken’s solution

In 1976, K. Appel and W. Haken solved the four-colour 
problem by reducing it to 1936 cases which they then 

examined with the aid of a computer.



The proof 
is acclaimed



Maps on a sphere

The map can 
be on a plane 
or a sphere.

But what about colouring maps on other 
surfaces? 



The Heawood conjecture

Heawood: On a surface with g holes, every map can 
be coloured with [(7 + √(48g + 1) / 2] colours.

But are there maps which need this number of colours?  



The Ringel-Youngs theorem

In 1968, G. Ringel & J.W.T. Youngs completed the proof 
of the Heawood conjecture:  

On a surface with g holes, there are maps that need 
[(7 + √(48g + 1) / 2] colours. 

Their proof split into 12 separate cases which they 
had to deal with individually.
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