Connecting the dots Milestones in graph theory Robin Wilson

History of Graph Theory

Origins of graph theory

frivolous. Whereas many branches of mathematics were motivated by fundamental problems of calculation, motion and measurement, the problems which led to the development of graph theory were often little more than puzzles, designed to test the ingenuity rather than to stimulate the imagination.
But despite the apparent triviality of such puzzles, they captured the interest of mathematicians, with the result that graph theory has become a subject rich in theoretical results of a surprising variety and depth. [Road/rail networks, operations research, neural nets, computing]

Six problems

1. Königsberg bridges problem 2. Knight's-tour problem
2. Gas, water, \& electricity problem
3. Good Will Hunting problem
4. Minimum connector problem
5. Map-colour problem

What is a graph?

A graph consists of vertices joined by edges.
Joining all vertices gives a complete graph (such as K_{5})
The degree of a vertex is the number of emerging edges.
If all degrees are the same, the graph is regular; a cubic graph is regular of degree 3.
Some graphs have cycles - those without are trees.
A bipartite graph has all cycles of even length.

1. Königsberg bridges problem

Is there a walk that crosses all seven bridges exactly once?

Leonhard Euler (1736)

In addition to that branch of geometry which is concerned with magnitudes, there's another branch, previously almost unknown, which Leibniz first mentioned, calling it the geometry of position. Concerned only with the determination of position and its properties, it doesn't involve measurements, nor calculations made with them.
It hasn't yet been satisfactorily determined what problems are relevant to this geometry, or what methods should be used in solving them. So when a problem was recently mentioned, I had no doubt that it was concerned with the geometry of position . . .

Euler's solution

Whenever we enter a

 region, we must be able to leave it - requiring 2 bridges - giving an even number of bridges around each region. But here these numbers are odd ($5,3,3,3$), so the walk cannot be done.Here the numbers are $A(8), B(4), C(4), D(3)$, $E(5), F(6)$, so there's a walk from D to E.

The modern approach

(by graph theory)

Can you draw this picture in one continuous penstroke without repeating any line?

- NOT drawn by Euler

Diagram-tracing puzzles

2. Knight's-tour problem

Can a knight visit all the squares of a chessboard (by knight's moves) and return to its starting point?

\square	\square
\square	

Solving the knight's-tour problem

30	41	46	37	32	53	60	67	72	55
47	36	31	40	45	68	73	54	61	66
42	29	38	33	50	59	52	63	56	71
35	48	27	44	39	74	69	58	65	62
28	43	34	49	26	51	64	75	70	57
7	20	25	14	1	76	99	84	93	78
12	15	8	19	24	89	94	77	98	85
21	6	13	2	9	100	83	88	79	92
16	11	4	23	18	95	90	81	86	97
5	22	17	10	3	82	87	96	91	80

50	11	24	63	14	37	26	35
23	62	51	12	25	34	15	38
10	49	64	21	40	13	36	27
61	22	9	52	33	28	39	16
48	7	60	1	20	41	54	29
59	4	45	8	53	32	17	42
6	47	2	57	44	19	30	55
3	58	5	46	31	56	43	18

The intelligent fly

The Icosian

game

Sir William Rowan Hamilton

A voyage round the world

THE ICOSIAN GAME.

Entered
at
Stationers' Hall.

Act V. \& VI. Vic. cap. 100.

LONDON:
PUBLISHED AND SOLD WHOIESALE BY JOHN JAQUES AND SON, 102 HATTON GARDEN; and to be had at most of the leading fancy repositories THROUGHOUT THE KINGDOM,

Revd. Thomas P. Kirkman

"If we cut in two the cell of a bee",

 is this Hamiltonian?

William T. Tutte
 On Hamilton circuits

A problem of 1880:
Does every cubic polyhedron graph have a Hamiltonian cycle?

Kirkman (1884):
"It mocks alike at doubt and proof."

No: in 1946, Tutte published this counter-example with 46 vertices.

3. Gas, water, \& electricity problem

Can we connect the three houses A, B, C to the three utilities gas, water, electricity without any connections crossing?
(Here, house B is not joined to water)

The utilities problem

Is this graph $\mathrm{K}_{3,3}$ planar?
Look at the 6-cycle A-G-B-W-C-E-A, and try to add the connections A-W, G-C, and E-B . . .

Planar graphs \& Kuratowski’s theorem

A graph is planar if and only if it doesn't contain K_{5} or $\mathrm{K}_{3,3}$

Euler's

 polyhedron formula:
F + V = E + 2

cube

6 faces, 8 vertices, 12 edges
and $6+8=12+2$

dodecahedron

12 faces, 20 vertices, 30 edges
and $12+20=30+2$
great rhombicosidodecahedron 62 faces, 120 vertices, 180 edges and $62+120=180+2$

Euler's polyhedron formula

 ez izcorters
贯 F/ Ef
 9.

 rocecturumw

The five regular polyhedra

$4+4=6+2 \quad 8+6=12+2 \quad 6+8=12+2 \quad 20+12=30+2 \quad 12+20=30+2$

Polyhedra with pentagons

\& hexagons

Soccer balls have

 exactly 12 pentagons

Count the faces: for a soccer ball with
p pentagons and h hexagons, $F=p+h$.
Count the edges around the faces: $2 E=5 p+6 h$.
Count the (three) edges at each vertex:

$$
3 V=2 E=5 p+6 h
$$

Because $\mathrm{F}+\mathrm{V}=\mathrm{E}+2$,

$$
(p+h)+(5 / 3 p+2 h)=(5 / 2 p+3 h)+2
$$

The h's cancel, leaving $5 / 3 p+p=5 / 2 p+2$. So $p=12$, and there are exactly 12 pentagons.

4. Good Will Hunting problem

"Draw all the homeomorphically irreducible trees with 10 vertices"

Counting trees

The six trees with 6 vertices. How many trees have 100 vertices? How many 'homeomorphically irreducible' trees have 10 vertices?

Alkanes $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$ have a tree structure. How many have n carbon atoms?

Labelled trees

Arthur Cayley, 1889:
The number of n-vertex labelled trees is $\mathrm{n}^{\mathrm{n}-2}$:

$$
n=3: 3 \quad n=4: 16 \quad n=5: 125
$$

5. Minimum connector problem

We wish to connect several cities by links (canals, railway lines, air routes, etc.), but connection costs are high.
How can we minimize the total cost, but still get from any city to any other?

Trees with total costs: 23,21,20

Greedy algorithm

At each stage

choose the cheapest link that creates no cycle.

Choose AE (cost 2)
Choose EC (cost 3)
We can't now choose AC (cost 4)
So choose CB (cost 5)
We can't choose AB, EB (cost 6)
So choose ED (cost 7)
Total cost: $2+3+5+7=17$

Connecting the 48 US States

Travelling salesman problem

A traveling salesman wishes to visit a number of cities and return to the starting point, minimizing the total travelling cost.

Total costs 29, 29, 28

Trial and error: total cost 26

Travelling the 48 States

6. Colouring maps

Can every map be coloured with four colours so that adjacent regions are coloured differently?

Appel \& Haken's solution

In 1976, K. Appel and W. Haken solved the four-colour problem by reducing it to 1936 cases which they then examined with the aid of a computer.

Maps on a sphere

The map can be on a plane or a sphere.

But what about colouring maps on other surfaces?

The Heawood conjecture

Heawood: On a surface with g holes, every map can be coloured with [(7 + V (48g +1) / 2] colours.
But are there maps which need this number of colours?

The Ringel-Youngs theorem

In 1968, G. Ringel \& J.W.T. Youngs completed the proof of the Heawood conjecture:
On a surface with g holes, there are maps that need

$$
[(7+V(48 g+1) / 2] \text { colours. }
$$

Their proof split into 12 separate cases which they had to deal with individually.

